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Cancer stem cells (CSCs) are comprised of hierarchically-organized subpopulations 
of cells with  distinguished phenotypes and tumorigenic capabilities that concrete 
to metastasis and cancer recurrence. According to related studies, their presence 
stands as the main reason of cancer associated fatalities. The fundamental feature 
of these cells is their ability to provide resistance towards conventional treatments 
or facilitate escaping routes, which include the overexpression of multifunctional 
ATP-binding cassette (ABC) efflux transporter gene family, metabolism 
reprogramming, and activation of survivance pathways . Conventional therapies 
are mainly capable of annihilating cancer cells, while lacking the ability to remove 
vital CSCs. The recurrence of tumors can be impeded through the targeting of 
CSCs by different therapies. Nanoparticles with unique properties have emerged 
as a promising approach for combating stem cancer cells. Therefore, the exertion 
of nanoparticles, especially metal nanoparticles ‐ based drug delivery systems in 
cancer imaging and remedial treatment, can surpass the obstacles of conventional 
treatments. Therefore, the possibility of achieving nonspecific toxicities through 
the administration of lower but more accurate targeted doses can be provided 
by the  production of theranostic metal nanoparticles and the incorporation of 
payload drugs into metal nanoparticles carriers, which requires a particular focus 
on the significance of biomarker targeting for remedial purposes and the unique 
contrast‐enhancing features of theranostic metal nanoparticles for facilitating 
image‐guided delivery. Despite the benefits of using nanoparticles for treating 
cancer stem cells, yet it is necessary to surpass the numerous challenges and 
further conduct comprehensive researches.
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INTRODUCTION
According to the strong proofs on the 

heterogeneous form of most of the malignant 
cancers, it is affirmed that they contain a populace of 
cancer stem cells (CSCs) and differentiated cancer 
cells. Generally, the Heterogeneity of applied cancer 
stems are recruited to the tumor from various 
cell types, as well as genetic and/or epigenetic 
dissimilarities among the cancer cells. In conformity 

to the discovered proofs in regards to cancer cells, 
the represented plasticity by tumors is indicative 
of two classifications of tumor cell population that 
include CSCs and non-CSCs. There are numerous 
arguments on the topic of resemblances and 
diversities among normal tissue stem cells and 
cancer stem cells (CSCs). The significant traits 
of normal stem cells and CSCs throughout the 
quiescent stage are known to be self-renewal and 
maintenance. Considering the lack of a complete 

http://creativecommons.org/licenses/by/4.0/.
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comprehension on the origination of CSCs, yet the 
related data are indicative of their emanation from 
normal stem, progenitor cells, or possibly other 
cancer cells. Known as tumor-initiating cells, CSCs 
are abled to exhibit self-renewal, proliferation, and 
differentiation proficiency in novel cancer cells. In 
comparison to non-stem cancer cells, cancer stem 
cells contain various functionalities and phenotypic 
traits . According to studies, apparently CSCs are 
the basis of every villainous that are hidden far 
from the surface of tumor tissues, while eluding 
the drugs and anticipating for the proper time to 
devastate the organ [1-8]. The statues of metastasis, 
drug resistance, tumor progression, and tumor 
recurrence condition rely on the functionality of 
these cells [9-11]. CSCs contain some vital qualities 
that can significantly affect the process of metastasis 
and tumor recurrence, which include multidrug-
resistant, the overexpression of multifunctional 
ATP-binding cassette (ABC) efflux transporter 
gene family as a similar phenotypic property, 
metabolism reprogramming, and activation of 
survival pathways. Different elements such as tumor 
microenvironment, which is consisted of numerous 
varieties of proteins that contain growth factors 
and cytokines, can activate CSC survival pathways 
and possibly fill the functionality of chemo- or 
radiotherapy for improving the stemness feature 
through the aid of transforming cancer cells into 
CSCs. Moreover, the inducement of local and distant 
metastasis is usually initiated by CSCs through the 
epithelial-mesenchymal transition (EMT) program 
(EMT is a property of embryogenesis). In cancers, 
EMT is implicated throughout the development 
of tumors into a metastatic phenotype, which is 
marked by the inactivation of epithelial properties 
and the upregulation of mesenchymal features. 
[6, 12-25]. Next to their numerous embryonic or 
tissue stem cell traits, different cellular signaling 
pathways are involved in the management of 
CSC cellular physiology throughout their tumor 
microenvironment. The arrangement of these 
signaling routes, which include Notch, Wnt, 
and Hedgehog, has a substantial functionality 
in regularizing self-renewal, proliferation, and 
differentiation traits of stem cells. The mutation or 
abnormal activation of these pathways’ genes can 
disturb their regulation. There are researches that 
confirmed the potential of these three pathways in 
inducing tumorigenesis, driving tumor progression 
and facilitating epithelial to mesenchymal 
transition in malignant cells, ​causing the growth 

of CSC, forcing metastasis, maintaining the 
stemness of stem cells, and initiating drug-resistant 
behaviors in the course of cancer treatment [26-
29]. CSCs are considered as the cause of tumor 
resistance due to their innate resistance to standard 
therapies such as chemo- and radiotherapy. In this 
regard, the available treatments can be enhanced 
and the obstacle of cancer drug resistance can be 
surpassed in longterm through the application 
of novel therapeutic strategies with the ability to 
target CSCs markers. As a result, it is crucial for 
clinical implications to develop new methods 
for improving the sensitivity of CSC markers. 
Nanotechnology provides the possibility of 
performing targeted and effective drug delivery 
to desired locations, as well as decreasing the rate 
of induced side effects on normal cells, facilitating 
the production of personal medicine, providing 
simultaneous diagnosis and treatment, and creating 
a suitable platform to overcome the existing 
obstacles. The potential of several nanomaterials, 
such as liposomes, nanoemulsion, polymeric 
micelles, and metal  nanoparticles , in functioning 
as the carriers of therapeutic agents were examined 
for the treatment of CSCs [30-32]. A large number 
of research has been conducted on the exertion of 
metal nanoparticles throughout CSCs therapies. 
Choi et al. reported the application of Graphene 
Oxide – Silver Nanocomposite for improving the 
Cytotoxic and Apoptotic Potential of Salinomycin 
in Human Ovarian Cancer Stem Cells (OvCSCs).  
Their results displayed the inducement of a notable 
toxicity in both ovarian cancer cells and OvCSCs. 
Apparently, the applied nanocomposite showed 
toxicity towards OvCSCs and decreased the cell 
viability through the mediation of generated 
reactive oxygen species, causing the leakage of 
lactate dehydrogenase, decreasing the potential 
of mitochondrial membrane, and improving the 
expression of apoptotic genes, which leads to the 
inducement of mitochondrial dysfunction and 
possibly initiates the occurrence of apoptosis 
[33]. In the work of Hembram and colleagues, 
Quinacrine Based Gold Hybrid was applied in 
Nanoparticles, CSCs model SCC-9 oral cancer cells, 
to achieve QAuNP, which displayed a satisfying 
anti-CSC growth potential in opposition to SCC-9-
cancer stem like, while down-regulating the agents 
of CSC marker. The observance of an extended G2 
/ M population and apoptosis to SCC-9-CSC like 
cells were considered as the signs of S-phase arrest 
and the generated re-replication that occurred 
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as a result of QAuNP lengthened exposure. In 
general, a irreversible replication fork movement 
was caused by the QAuNP treatment. Additionally, 
MRE-11 may have caused a degradation in  the 
stalled replication fork that ultimately leads to the 
occurrence of apoptosis and CSCs annihilation 
[34]. In the current review, next to presenting the 
highlights of recent major progresses in metal nano 
particle-based techniques in regards to CSC-specific 
markers and/or related signalling pathways, we also 
explored the application prospects and discussed 
the related issues, approaches, and challenges.

CSC ISOLATION AND CHARACTERIZATION
There are similarities and differences between 

the functionality and phenotypic properties of 
normal tissue stem cells and cancer stem cells 
(CSCs), which resulted in the expansion of various 
assays for isolating and distinguishing the CSCs. 
Certain substantial features, including self-renewal 
and lineage capacity, can facilitate the recognition 
of CSCs [35-38]. Moreover, they can be also 
distinguished through more specific qualities that 
include phenotypic surface markers similar to 
CD34+/CD38− in leukemia cells, CD44+/CD24− 
in solid tumors, CD133+ in other tumors, and 
EpCAM. In the form of a transmembrane protein, 
there are reports on the overexpression of CD44 on 
varying cancer cells, which include breast, prostate, 
gastric, pancreas, ovary, colorectal, bladder, 
hepatocellular, head and neck, and leukemia CSCs. 
The existing glycosaminoglycan (hyaluronic acid) 
in extracellular matrix forms a binding with this 
protein to facilitate the attachment of CSC, as well 
as contribute to the proliferation and migration of 
stem cells. Known as a cell surface glycoprotein, 
the major expression of CD133 (Prominin-1) 
can be observed on certain types of CSCs of solid 
tumors that are implicated in glioma, lung, and 
breast cancer. In addition, reports are indicative 
of its highly expression on the CSCs of various 
cancers throughout varying tissue origins that 
augmented drug resistance. CD24 is a 27-amino-
acid single-chain protein that can form a binding 
to the extracellular matrix and is widely exerted as 
a cancer stem cell marker. Its overexpression has 
been observed in numerous cancer cases including 
nasopharyngeal carcinoma, ovarian cancer, and 
pancreatic cancer. The hallmark of haematopoietic 
stem cells is known to be CD34 transmembrane 
protein. The population of CD34 cell within bone 
marrow is composed of haematopoietic stem 

cells and progenitor cells, while being capable of 
functioning throughout reconstruction progresses 
in humans and certain primates. According to 
related reports, CD34 can maintain the self-
renewal, bipotency, and tumorigenicity properties 
of CSCs. In the form of a I trans-membrane 
glycoprotein, EpCAM is composed of 314 amino 
acids of extracellular, trans-membrane, and 
cytoplasmic domains . This protein can function in 
various roles such as cell-cell adhesion migration, 
proliferation, cell cycle metabolism, cell signaling, 
cell differentiation, metastasis, regeneration, and 
organogenesis [39-46]. CSCs can be chiefly isolated 
through the exertion of (fluorescence-activated cell 
sorting) technique. This uncomplicated procedure 
involves fluorescent activated cell sorting and is 
exerted for the purification and isolation of CSC. 
FACS is contingent on the expression of various 
particular cell surface markers including CD24, 
CD34, CD44, and CD133, EpCAM [47-50] . 
One of the standard methods for isolating CSC is 
MACS (magnetic-activated cell sorting), which 
is build upon the implication of specific stem cell 
markers and can provide the isolation of high-
quality cells from a heterogeneous population cell. 
In this technology, the cell surface markers are 
initially tagged with monoclonal antibody (mAb) 
or magnetic microbeads to perform a complete 
isolation. Then, positive selection is conducted 
to remove the unmarked cells and sequester the 
marked cells, as well as to impressively isolate 
the objective cells from a cell suspension [51-54]. 
CFU( colony-forming unit assay) is  recognized 
as a quantitative and high-throughput procedure, 
which is reported to be analogous for in vivo 
transplantation. The utilization of CFU assay helps 
to examine the pattern of CSC proliferation and 
differentiation through their quality of producing 
colonies within a semisolid medium. A peculiar 
number of input cells are required to create 
these colonies in order to provide vital data on 
the proliferation and differentiation potential of 
CSCs. Briefly, in a non-adhesive manner, CSCs 
are cultured within a serum-free medium that had 
been supplied with growth factors for the purpose 
of developing into tumorspheres. As the cancer 
cells are subjected to anoikis (a suspension-induced 
apoptosis) throughout the arranged conditions, 
CSCs have the ability to remain alive and produce 
tumorspheres on the colony basis. The ability of 
this technique in isolating highly pure CFU can 
facilitate the achievement of accurate cellular 
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and molecular characterization of existing cell 
populations [55-57]. An overexpressed situation of 
drug can efflux transporters, particularly BCRP or 
ABCG2, and consequently function as the basis of 
CSCs isolation. For instance, the cell populations 
with the ability to efflux Hoechst 33342 dye 
can maintain the properties of CSC throughout 
different types of cancer,; considering these facts, 
this procedure stands as the most popular route for 
isolating CSCs [19, 58-61]. 

COMMON TREATMENTS IN CANCER STEM 
CELL THERAPY

Due to the many disadvantages and restrictions 
of the common therapeutic tactics for cancer, 
including chemo- and radiotherapy, the applied 
treatments are often defeated and result in the 
recurrence of cancer in patients. The available 
treatments are incapable of particularly targeting 
CSCs and consequently cause toxicity in normal 
tissues, which heightens the risk of illness 
recurrence in patients[62-64]. Recently, a number 
of developed approaches with the particular goal 
of eliminating CSCs and varying their niche were 
studied due to the significance of CSC omission 
for deflecting cancer recurrence. The effectiveness 
of a therapy relies on its ability in targeting 
both CSCs and non-CSCs. Current researches 
attempted to consecrate the multiple modern 
remedial approaches  for extinguishing CSCs. The 
alterations in signaling pathways ( Notch, Wnt, 
and Hedgehog) and surface marker differences 
are alluring  remedial purposes for CSC therapy. 
The securing of EMT and acquisition of CSC 
phenotype, which assists the metastasis potential of 
CSS, are the factors of establishing the direct link 
of signaling pathways. The focus of many studies 
was centered on the surface marker differences 
and dysregulation of signaling pathways in CSCs 
in order to discover enhanced techniques to 
successfully treat cancer patients. According to 
related researches,  the application of surface 
markers as significant targets can be considered for 
therapies,  which include  CD133 ,CD44,CD24 and  
etc . The selected ligands or antibodies are applied 
as the surface markers in order to be implicated 
in chemotherapy, radiotherapy, and  surgery . 
As a very significant factor, the enhancement of 
monoclonal antibody is emphasized in the process 
of targeting CSCs [13, 26, 65-78] . Moreover, some 
studies reported the certain CSC remedial targets 
with a higher potential such as ABC transporter-

binding protein and microenvironment niche. 
Next to the expression of high levels of ABC 
transporter proteins in CSCs, these proteins can 
facilitate the preserving of CSCs from therapeutic 
agents. Therefore, the downregulation of these 
proteins can stand as a applicable method for 
conquering the inducement of drug resistance to 
common Traditional cancer therapies and prevent 
the occurrence of recurred conditions. Tumors are 
composed of cancer cells and intricate organs that 
contain a large number of other recruited cells, 
which may be in correlation to the transformed cells. 
Tumors microenvironment (TME) is consisted 
of interplays that exist among cancer and non-
transformed cells. The tumor microenvironment 
(The cells of the immune system, Proteins, 
peptides, growth factors, cytokines, the lymphatics, 
endothelial cells, extracellular matrix,the tumor 
vasculature, pericytes, fibroblasts, and adipocytes 
and etc) aids to defend the CSCs from outside toxic 
agents  [79-90]. In addition, next to CSC survival 
and chemo-resistance, tumor angiogenesis is a 
vital factor that is triggered by VEGF. According 
to many studies, targeting VEGF with certain 
antibodies, such as  bevacizumab, can normalize the 
tumor vasculature and cause a decrease in tumor 
stem cell number [91-94] . Generally, the current 
treatments in Cancer Stem Cell Therapy that are 
build on various targeting methods (Table 1) 
include tumor microenvironment, surface marker 
expression, deregulated signal cascades, and ABC 
transporters, which facilitate the prevention of 
relapsed conditions.

Abbreviations in this table are defined as the 
following: TRXT :Tarextumab, McAb: monoclonal 
antibody , PTX: paclitaxel, FAP :fibroblast activation 
protein, Smo: smoothened, Hh: Hedgehog, LGR5: 
encoding an R-spondin (RSPO) receptor, FZD: 
Frizzled, CS : Chondroitin sulfate[ is founded in 
extracellular matrix], VEGF : Vascular endothelial 
growth factor, EpCAM : epithelial cellular adhesion 
molecule, small-molecule porcupine inhibitors 
(Signaling pathwayWNT: ETC-159, WNT-C59 
and WNT974), tankyrase inhibitors (Signaling 
pathwayWNT: AZ1366, G007-LK, NVP-TNKS656 
and XAV939),CD44: Cluster of differentiation 44, 
CD24: Cluster of Differentiation 24‎, CD34: Cluster 
of Differentiation34, miRNAs: microRNAs , 
ABCB1: P‐glycoprotein/P‐gp; multidrug resistance 
1/MDR1,ABCC5: multidrug resistance protein 
5, ABCG2: ATP-binding cassette sub-family G 
member 2, MDR : multidrug resistant, ABCA2:ATP 
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The current therapies to 
target CSCs Drug Target site References 

Deregulated signal 
pathways 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notch 

MK-0752 Notch1 [95] 

Tocilizumab Notch3 [96] 

RO4929097 Notch1 [8] 

Demcizumab (OMP-21 M18) Notch 1 [97] 

WC75, WC629 Notch1 [98] 

OMP-52M51 (brontictuzumab) Notch1 [99] 

N3_E10 Notch3 [100] 

N1_E6 Notch1 [101] 

N2_B6, N2_b9 Notch2 [100] 

256A-13 Notch3 [102] 

(Roche) PF-03084014  Notch1 [103] 

OMP-59R5, TRXT + paclitaxel + Gemcitabine Notch 2/3 [104] 

nab‐paclitaxel+ gemcitabine Notch3 [105] 

RO4929097+ capecitabine Notch1 [106] 

RO4929097 +gemcitabine Notch1 [107] 

RO4929097 + temsirolimus Notch-3 [107] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
WNT 

OMP-54F28 (FZD8-Fc) WNT [108] 

miR-574-5p WNT [109] 

OMP-18R5 (Vantictumab) WNT [110] 

anti-LGR5 antibody-drug conjugate (ADC)[ 
(mAb-mc-vc-PAB-MMAE)] WNT [111] 

anti-PTK7 ADC (PF-06647020) WNT [112] 

anti-ROR1 mAb (cirmtuzumab) WNT [113] 

anti-RSPO3mAb (rosmantuzumab) WNT [114] 

ETC-159 WNT [108] 

WNT-C59 WNT [115] 

WNT974 WNT [116] 

AZ1366 WNT [117] 

Av65 WNT [118] 

G007-LK WNT [119] 

Sulindac WNT [120] 

NVP-TNKS656 WNT [121] 

XAV939 WNT [122] 

BC2059 β-catenin [123] 

CWP232228 β-catenin [124] 

ICG-001 β-catenin [125] 

PRI-724 β-catenin [126] 

Thiazolidinedione β-catenin [127] 

PNU-74654 β-catenin [128] 

NSAIDs β-catenin [129] 

 
 
 
 

GANT61 Gli 1/2 [130] 

Femara® (letrozole) Gli 1 [131] 

NVP-LDE225 Gli 1, Smo ,Ptch1 [132] 

Table 1. Elimination of CSCs based on different targeting approaches
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The current therapies to 
target CSCs Drug Target site References 

 
 
 
 
Hedgehog 

NVPBEZ235 Gli 1/ Gli2, Ptch1/Ptch2 [133] 

IPI–92666 Smo [134] 

GDC-0449128 (Cur-61414) Smo [134] 

BMS–833923129 Smo [134] 

Robotnikinin64 Smo [134] 

PF–04449913 Smo [135] 

HPI 1–465 Gli1, Gli2 [136] 

 
 
Tumor microenvironment 

PF-06647020 WNT [137] 

Hu5F9-G4 anti -CD47 [138] 

IO3D9 anti -CS [139] 

IO3H10 anti -CS [140] 

IO3H12 anti -CS [141] 

GD3G7 anti -CS [142] 

TRC105+ bevacizumab anti -VEGF [143] 

mAb FAP5-DM1 Anti- fibroblast [144] 

αFAP-PE38 Anti -fibroblasts [145] 

ab28244 Anti-FAP [146] 

RIP140 Anti-Adipocytes [147] 

 
 CD markers 
 
 
 
 
 
 
 

 
H90 

 
anti-CD44 [148] 

H460-16-2 anti-CD44 [149] 

Bivatuzumab (BIWA-4) anti-CD44 [150] 

ING1 anti-EpCAM [151] 

MT201 anti-EpCAM [152] 

Catumaxomab anti-EpCAM [153] 

Selumetinib (AZD6244; ARRY-142886) anti-CD44/CD24 [154] 

LabVision anti-CD44/CD24 [155] 

SN3b Anti-CD24 [156] 

Neomarkers anti-CD44/CD24 [157] 

Fremont anti-CD44/CD24 [158] 

VFF18 anti-CD44 [159] 

Millipore anti-CD44 [160] 

Billerica anti-CD44 [161] 

VFF-327v3 anti-CD44 [162] 

156-3C11 anti-CD44 [163] 

AC133 anti-CD133 [164] 

AC141 anti-CD133 [165] 

293C3 anti-CD133 [166] 

CMab-43 anti-CD133 [167] 

Continued Table 1. Elimination of CSCs based on different targeting approaches



310Nanomed Res J 6(4): 304-326, Autumn 2021

S. Shokravi et al. / Cancer stem cells (CSCs): the blockage of metastatic and stemness 

Continued Table 1. Elimination of CSCs based on different targeting approaches

 
Table 1 :Elimination of CSCs based on different targeting approaches 

 
 
 
  

    

The current therapies to 
target CSCs Drug Target site References 

C2E1 anti-CD133 [168] 

293C3 anti-CD133 [169] 

BXP-21 anti-CD34 [170] 

581 (PE) anti-CD34 [171] 

QBEnd10 anti-CD34 [172] 

My10 anti-CD34 [173] 

FITC-518 anti-CD34 [174] 

AC136 anti-CD34 [175] 

8G12 anti-CD34 [176] 

5B12 anti-CD34 [177] 

4C8 anti-CD34 [178] 

Nilotinib anti - CD34/CD38 [179] 

Ebiosciences anti-CD38 [180] 

HIT2 anti-CD38 [181] 

miR-205 ABCA2 /ABCA5 [182] 

miR‐200c    ABCG5 /MDR1 [183] 

miRNA‐451 ABCB1 [184] 

miR‐27a ABCB1 [185] 

miR‐137 ABCB1 [186] 

miR‐145 ABCB1 [187] 

miR‐298 ABCB1 [188] 

miR‐331‐5p ABCB1 [189] 

miR‐451 ABCB1 [190] 

miR‐1253 ABCB1 [191] 

miR‐138 ABCB1 [192] 

miR‐296 ABCB1 [193] 

miR-491-3P Caco-2 / ABCB1 [194] 

miR-9 ABCB1 [195] 

MiR-223 ABCB1 [196] 

MicroRNA-873 ABCB1 [197] 

miR-212 and miR-328 ABCB1 /ABCG2 [198] 

miR-34b/miR-892a ABCB1/ABCB4 [199] 

miR-491-3p ABCB1 [200] 

miR-508-5p ABCB1 [201] 



311

S. Shokravi et al. / Cancer stem cells (CSCs): the blockage of metastatic and stemness 

Nanomed Res J 6(4): 304-326, Autumn 2021

-binding cassette transporters A2,  ABCA5:ATP 
-binding cassette transporters A5 , ABCB5: ATP-
binding cassette sub-family B member 5,  ABCC5: 
Multidrug resistance-associated protein 5, ABCG5: 
ATP-binding cassette sub-family G member 
5,  ABCB4 : ATP Binding Cassette Subfamily B 
Member 4.

METAL NANOPARTICLES‐BASED DELIVERY 
SYSTEM FOR CANCER STEM CELL THERAPY

Currently, there are several effective therapeutic 
agents available in clinics for cancer patients that 
generally include surgery, chemo- or radiotherapy 
drugs, therapeutic nucleic acids, targeted 
monoclonal antibodies, small molecular inhibitors, 
and their combinations. These treatments are 
mainly capable of annihilating the cancer cells and 
can not remove the CSCs that exist throughout the 
population of tumor cell, which effectively getaway 
by applying certain resistance processes. According 
to the recent concept of CSC, the recurring 
condition is fundamentally assisted by the innate 
and earned resistance technique from the existing 
CSCs population in cancer cell mass. The potency 
of CSC in eluding the regular therapeutic orders is 
caused by their slow-cycling phenotype, the 
upregulated expression of efflux pumps (ABC), 
antiapoptotic proteins, competent DNA response, 
and repair machinery. Apparently, the therapeutic 
potential of these agents faced a reduction in 
clinical trials as a result of varying restrictions such 
as very weak stability, weak water solubility, lenient 
biodistribution, terse circulation time, or off-target 
impacts. Moreover, CSCs can inhabit throughout 
low oxygen regions (Hypoxia) away from 
vascularized area and consequently hinder the 
effectiveness of remedial agents delivery [202-222] 
. The results of some studies indicated the feasible 
functionality of chemo- or radiotherapy in 
augmenting the stemness feature through the 
conversion of cancer cells into CSCs. According to 
recent reports, the irradiation of breast cancer cells 
can result in augmenting a portion of CSCs 
population, while other discoveries pointed out the 
ability of some noncancerous cells in gaining the 
phenotype feature of CSC. Furthermore, traditional 
viewpoints claim that cancer cells initiate the 
progress of a small cancer cell population with drug 
resistance behaviors as a result of repeated 
chemotherapeutic remedy, which can lead to the 
inactivation of drugs, changing drug targets, and 
decreased drug aggregation within the cancer cells. 

The performed investigations on the monoclonal 
antibodies that are exerted for targeting CSC 
marker inculcated their potency in impeding the 
progress of  tumors. In fact, there are many 
successful studies on CSC targeting antibodies that 
were permeated to propel on to the clinical trial 
stage. Nevertheless, a great number of antibodies 
lacked the sufficient efficacy for treating patients 
and caused the recurrence of tumors due to the 
drug-resistant behavior of cancer cells [223-227] . 
This survival ability of CSC result in illness 
recurrence with the creation of more malignant 
and highly invasive tumors that display resistance 
to chemo- and radiotherapy. In this regard, the 
remedy of tumors with conventional methods ends 
up in the increment of CSC fraction that cause the 
tumor cells survival and induce metastasis at 
distant positions. Generally, a complete treatment 
requires the annihilation of CSC along with the 
removal of non-CSCs. Therefore, tumor-recurrence 
conditions can be ruled out by targeting CSCS with 
diverse remedial modalities. According to previous 
data, the solo targeted elimination of CSC can not 
thoroughly cure a cancer disease due to the 
plasticity and heterogeneity of cancer cells that 
evert their phenotype into CSCs.  Considerably, it is 
necessary to focus on the enhancement of modern 
remedial procedures capable of performing the 
simultaneous elimination of both multiple drug-
resistant CSCs and bulk malignant tumor cells. 
Therefore, nanomedicine-assisted drug delivery 
systems succeeded in attaining the interest of many 
for conquering these obstacles . Nanotechnology 
has made different considerable developments 
throughout biomedical science such as the design 
of nanoparticle-based drug delivery systems, 
including liposomes, dendrimers, metal oxide 
nanoparticles, polymeric nanomicelles, and carbon 
nanotubes that attained the attention of many 
researchers. The loading of nano-medicines with 
high payload of single or multiple drugs requires 
control over their size and surface feature. 
Therefore, the enhancement of pharmacokinetic 
and pharmacodynamic features of nanomedicines 
became possible through the reduction of their side 
effects on normal cells. The amazing potential of 
nanomedicine-based procedures was  conformed 
due to providing a multipronged route of selectivity 
and more profound bioavailability. Moreover, the 
optimization of biocompatibility and 
pharmacokinetic features of these nanodrug 
carriers is achieved by modifying the surface of 
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nanoparticles. The previously mentioned 
restrictions can be hopefully resolved through the 
distinct qualities of nanomedicines, which include 
having control over size, tunable surface features, 
surface-to-volume ratios, interesting surface 
functional groups for bioconjugation, reduced rate 
of nonspecific biological distribution, and fewer 
side effects [18, 227-245] .  The simple passage of 
nanomedicines through blood capillaries for 
contacting the target site is facilitated by their 
smaller size (~200 nm). Various multifunctional 
nanoparticles formed their cancer therapeutic 
usages in available settings under the specific goal 
of targeting CSC. In recent years, some novel 
procedures were formulated to successfully target 
CSS, such as the design of nanoparticles that 
implicate a targeting ligand particularly for CSC 
that accommodate an anticancer drug molecule for 
omitting the combined CSS with a chemosensitizer 
to conquer drug resistance (such as an ABC  
transporter inhibitor) and an imaging agent to 
assist the tumor.  Such combination procedures 
may be capable of performing a more impressive 
anti-tumor impact along with a reduced rate of side 
effects, while simplifying the accurate recognition 
of primary tumor localization and its metastases as 
well. The most significant benefit of nanocarriers is 
their ability to conduct the simultaneous delivery 
of multiple drugs . The exertion of varying kinds of 
nanomaterials, such as polymeric nanoparticles, 
metal-based nanoparticles, carbon nanotube, 
magnetic nanoparticles, and liposome, were 
considered for preparing targeted nano-drug 
carriers in order to target CSC by the application of 
chemo-drugs, antibiotics, nucleic acids, peptides, 
and proteins.  The mentioned remedial agent 
modalities are capable of targeting downstream 
cellular signaling pathways, CSC survival-
associated genes, cell surface markers, and 
metabolic pathways [246-249].  The interest of 
many has been invested in designing and developing 
a multifunctional and stimuli‐responsive metal 
nanoparticles ‐based drug delivery system in 
regards to the diagnosis and therapy of cancer stem 
cells. Considering the quick progress of 
nanomedicine, the unique physical and chemical 
features of metal nanoparticles (gold, iron, silver, 
copper, tetanium,cobalt, nickel), including their 
high surface areas ,size, shape and surface 
construction, as well as their distinct optical , 
electronic , chemical and photoelectrochemical 
qualities ,size-dependent physicochemical features  

and etc, outshined the other options as a theranostic 
tool in biomedical implementations such as 
diagnostic imaging, drug delivery , gene therapy, 
novel therapeutics, magnetic resonance imaging , 
cell mechanics , hyperthermia , tumor advancement, 
in vivo tracking of stem cells, and cell detachment 
[234, 250-260]. The constructed Surface‐
functionalized metal nanoparticles by the 
utilization of engineered surface ligands provided 
useful approaches for the application of metal 
nanoparticles‐based drug delivery systems in 
cancer imaging and remedial treatment for the 
objective of surpassing the difficulties of 
conventional treatments. The design and 
development of stimuli‐responsive ligands were 
incorporated with the engineering of multiple 
physicochemical properties into metal 
nanoparticles for enhancing the efficiency of metal 
nanoparticles‐based delivery system (Fig. 1). As a 
result , the production of theranostic metal 
nanoparticles and incorporation of payload drugs 
into metal nanoparticles carriers can offer a chance 
of achieving nonspecific toxicities through the 
application of lower but more accurate targeted 
doses, which required a particular focus on the 
significance of biomarker targeting in regards to 
remedial purposes along with the distinct contrast‐
amplifying features of theranostic metal 
nanoparticles that provide image‐guided delivery  
[261-269] . Recently, researchers attempted to 
formulate several metal nanoparticles ‐based drug 
delivery system for CSC therapy (Table 2).

Abbreviations in this table are defined 
as the following: Glu-NP: Glucose-installed 
nanoparticle, siRNA :small interfering RNA, 
AuNPs: Au nanoparticle, PEG: Poly (ethylene 
glycol), HA: Hyaluronic acid, DOX :doxorubicin 
, G5- PAMAM: fifth-generation polyamidoamine 
dendrimer, Fe3O4@SiNPs:core/shell construction 
that the silica shell encapsulating Fe3O4 
nanoparticles as the magnetic core, HSPI: 
heat shock protein inhibitor, CD20: Cluster of 
Differentiation 20, SPIONPs: super-paramagnetic 
iron oxide nanoparticles, aptamer CSC1:aptamers 
selected against DU145 prostate cancer cells, 
aptamer CSC13:subpopulation of prostate cancer 
stem cells, PDC:polydiallyldimethylammonium 
chloride, ABCG2: ATP-binding cassette sub-
family G member 2, PTX: paclitaxel, EGFR: 
epidermal growth factor receptor, Dtxl:docetaxel, 
PLGA :poly(D,L-lactic-co-glycolic acid), PAH: 
poly(allylamine hydrochloride).
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CHALLENGES OF TARGETED BIO-
CONJUGATED NANOPARTICLE CANCER 
STEM CELL THERAPY

The promising stance of targeted nanoparticles 
design for CSC therapy is due to the ability of 
nanoparticles in enhancing the drug concentration 
in CSCs for the occurrence of omission throughout 
the tumor mass. In this regard, the remedial 
effectiveness of anti-CSC drugs for clinical 
trials can be increased by synthesizing targeted 
nanoparticles, which would also decrease the 
required time of treatment and result in achieving 
better outcomes from the patients; nevertheless, 
the form and optimizing process of impressive 
nanodrug carriers needs further investigations 
[294-297] .In recent years, next to the outshining 
progress in assessing the design of Targeted  
Nanoparticle  bioconjugates to function as 
effective chemotherapeutic agents, however, the 
achievement of applicable and impressive cancer 
treatment is predicted to be very distant. The 
conjugation of nanoparticles (NPs) with different 
ligands can lead to the production of very selective 
products in binding to the target, which would 

consequently enhance their efficacy and lower 
the induced toxicity. It is necessary to consider 
the challenges that rely on different parameters 
which determine the success and effectiveness of 
these products [100, 298, 299] . One of the most 
substantial obstacles  is  the existence of an interplay 
among the nature and size of NP and ligand. The 
traffic of NP throughout the body is controlled by 
their size as a significant parameter. Next to the 
befitting ability of small NPs in passively targeting 
tumors, however, they can be easily cleared by 
kidneys which is quiet problematic. On the other 
hand, the availability of larger NPs is restricted by 
their size which is considered as a disadvantage 
[300-304] . Another challenge that needs to be 
addressed is the modification of targeting moiety 
that is required to obtain a higher therapeutic 
efficacy and leads to the inducement of several 
issues such as expanded complexity, regulatory 
barriers, and extra cost. In addition, numerous 
questions were generated by the performed 
practices in regards to nanoparticle targeting 
and drug aggregation throughout the appointed 
tumor and CSC subpopulation. Considering this 

Fig. 1. Metal nanoparticles (iron, silver, copper, titanium, cobalt, nickel and gold) are used as theranostic agents for drug delivery 
systems in cancer imaging and therapy to overcome the obstacles of conventional treatment.
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scheme, it is assumed by a substantial paradox 
that the appending of targeting moiety onto the 
surface of nanoparticles concedes with the stealth 
quality of nanoparticles, while intensifying their 
clearance by reticuloendothelial system from host 
body. The benefit of nanoparticles high avidity is 
recognizes as one of their conundrums, however, 
this quality  causes a reduction in the infiltration 
ability of targeted nanoparticles into the tumor 
core. As another major challenge, observations 
were indicative of the existence of some CSC 
populations in the necrotic region of tumors, 
which is quiet difficult to be reached by targeted 
nanocarriers. Overall, the treatment of cancers 
that implicate accessible CSCs such as leukemia 
diseases can benefit from the application of 
targeted nanocarriers. Since a large number of CSC 
markers are utilized throughout the enhancement 
of targeted nanocarriers, the inducement of 
unwanted toxicity is expected due to their reported 
expression on normal stem cells; consequently, the 
discovery of highly CSC-specific ligands remains 
as a ambitious and difficult assignment [305-312]. 
Another major challenge related to CSC is to 
succeed in the particular targeting of slow-cycling 
cancer stem cells as one of the fundamental causes 
of recurrence condition. Moreover, there are other 
confrontations such as therapeutics targeting brain-
related cancers that are limited by the blood-brain 
barrier, which makes it very difficult for targeting 
NP-bioconjugated to reach such tumors[3, 313, 
314] . Furthermore, the high surface area and free 
surface energy of NPs stand as a crucial obstacle 
that requires attention since they can impact the 
obtained colloidal stability. There are inquiries 
for the exertion  of surfactants, polymers, and 
proteins to cause improvement in the colloidal 
stability . Nevertheless, it is of outmost importance 
to discover a method for the oral delivery of bio-
conjugated NPs by crossing the intravenous route 
and completing the procedure, which would benefit 
a tremendous number of patients [315-320] . 
Another fundamental challenge that has concerned 
many is related to the adverse biological impacts 
of NPs at cellular, tissue, organ, and organism 
levels due to the possibility of resulting in the 
inducement of nanotoxicity.  Certain biophysical 
properties, including size and surface features, 
can influence these products in vivo distribution, 
and consequently affect the signaling pathways 
and biological functionalities. different researches 
reported the negative effect of varying NPs on the 

liver, kidney, and skin through the upregulation 
of inflammatory pathway[321-324], Some studies 
indicated the potential ability of nanoparticles in 
heightening the rate of epigenetic alterations, which 
implicate histone posttranslational modifications 
and DNA methylation [325, 326]. 

CONCLUSION
cancer stem cells (CSCs) are known to contain 

different mechanisms for escaping conventional 
treatments, which leads to tumor recurrence 
and relapse. Moreover, the therapeutic efficacy of 
conventional agents faced a reduction as a result 
of different limitations such as weaker stability, 
weak water solubility, lenient biodistribution, terse 
circulation time, or off-target effects. A complete 
treatment requires the omitting of CSCs without 
destroying  non-CSCs. Therefore, it is essential 
to develop modern remedial procedures with the 
ability to perform the simultaneous elimination 
of both multiple drug-resistant CSCs and bulk 
malignant tumor cells. The potential capabilities of 
nanomedicine can overcome the resulting therapies 
from conventional methods. nanomedicine 
proved to be a promising tool for conquering 
aforementioned limitations due to containing 
specific properties, which include controllable 
size, tunable surface features, surface-to-volume 
ratios, appealing surface functional groups 
for bioconjugation, less nonspecific Biological 
distribution, and the lowest rate of side effects .The 
design and development of a multifunctional and 
stimuli‐responsive metal nanoparticles ‐based drug 
delivery system with distinct physical and chemical 
qualities can be efficient throughout the treatment 
of cancer and the elimination of multiple drug-
resistant CSCs and bulk malignant tumor cells. 
The form and development of stimuli‐responsive 
ligands were incorporated with the engineering 
of multiple physicochemical properties into metal 
nanoparticles in order to improve the efficiency 
of metal nanoparticles‐based delivery systems. As 
a result , the theranostic metal nanoparticles with 
the incorporation of loading drugs into metal 
nanoparticles carriers and  contrast  agent  imaging 
may offer the possibility of achieving nonspecific 
toxicities through the administration of lower 
but more accurate targeted doses. Despite the 
efforts and advances in targeted bio-conjugated 
nanoparticle cancer stem cell therapy, there are still 
many challenges in this area that require solutions 
and till then, the achievement of an effective and 
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impressive cancer treatment is predicted to be very 
distant.
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