nanomedicine
Mahboubeh Nazari; Farnoosh Ebrahimzadeh; Mojgan Falaki; Yasamin Hajimomeni; Rajender S. Varma; Nima Fallahnia
Abstract
Influenza virus have its place in the Orthomyxoviridae family, comprising four types of viruses namely influenza A, B, C, and D. Several methods are commonly used to diagnose influenza, including PCR, rapid test, viral culture, and immunofluorescence while antiviral drugs are available for the therapeutic ...
Read More
Influenza virus have its place in the Orthomyxoviridae family, comprising four types of viruses namely influenza A, B, C, and D. Several methods are commonly used to diagnose influenza, including PCR, rapid test, viral culture, and immunofluorescence while antiviral drugs are available for the therapeutic intervention including vaccines for preventive purposes which can inhibit the infection and virus spread more efficiently. The emergence of drug resistance is frequently detected due to the high occurrence of mutations in the virus's genome. Nowadays, nanotechnology has evolved to overcome these hurdles wherein it could be deployed for both, the diagnosis and treatment of viral infections via development of nano drugs and nano vaccines. Numerous nanostructures have been developed, such as peptides, proteins, polymers, metals, silicones, liposomes, and virus-like particles (VLPs), which can be used to diagnose and treat the influenza virus. These nanoparticles can be incorporated into nano biosensors or be employed as biological tags as nano drugs or nanocarriers for drug delivery as well as nano vaccines to stimulate the immune system more effectively. Herein, an overview of the potential application of nanotechnology-based strategies in the treatment, analytical methods, and vaccine production is presented for combating influenza viruses.