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This study aimed to enhance the effectiveness and water solubility of Minoxidil 
(MXD) by producing its nanocrystal structure, which improves its vasodilator 
properties and promotes hair growth. In the current study, the hair growth-
stimulating activity of the MXD nanoparticles (MXD-NPs) was compared with the 
hydroethanolic rosemary (RSY) extract on the C57BL/6 mice. The MXD-NPs were 
produced through a bead mill and ultrasonic process and characterized using 
various techniques. The cytotoxicity of MXD-NPs was studied on human dermal 
fibroblasts, and their hair growth-stimulating activity was analyzed in C57BL/6 
mice. The results showed that MXD-NPs significantly increased the hair growth 
rate in mice compared to commercial MXD and hydroethanolic rosemary extract 
as they were delivered safely and specifically to the target pilosebaceous follicles. 
The follicular uptake of MXD-NPs was also increased compared to commercial 
MXD, leading to improved pilosebaceous follicle re-growth and hair growth in 
treated mice. Therefore, MXD-NPs have the potential to be a safe and efficient 
iso-formulation structure for hair growth promotion.
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INTRODUCTION 
Alopecia, also known as hair loss, is a common 

skin disorder affecting approximately 50% of men 
and 40% of women [1-3]. The use of Minoxidil 
(MXD), a medication that promotes hair growth by 
increasing blood flow to hair follicles, is limited due 
to its potential side effects such as redness, itching, 
and inflammation. Additionally, the poor water 
solubility of MXD and the use of common toxic 
adjuvants like propylene glycol (PG) and ethanol 

can decrease its bioactivity and treatment efficiency 
[4-6]. The solvents used to dissolve MXD, such as 
PG/water/ethanol, can improve its bioaccessibility, 
but they may cause undesirable effects like burning, 
scalp dryness, dermatitis, irritation, and redness [7, 
8]. 

Minoxidil nanocrystals represent a 
groundbreaking innovation in the field of hair 
growth treatments. These nanocrystals are tiny, solid 
particles of minoxidil, an FDA-approved medication 
for treating hair loss in both men and women. The 
development of minoxidil nanocrystals aims to 

http://creativecommons.org/licenses/by/4.0/.
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improve the drug’s bioavailability, penetration, 
and efficacy, ultimately leading to better hair 
regrowth outcomes. By reducing the particle size of 
minoxidil, researchers have managed to enhance its 
solubility and stability, allowing for more effective 
delivery to the hair follicles. 

In a study in 2019, Noriaki et al., synthesized 
minoxidil monocrystals. Minoxidil monocrystals 
have shown promising results in vitro and in 
vivo studies, demonstrating their potential to 
revolutionize hair growth treatments [9]. In 
comparison to traditional minoxidil solutions, 
nanocrystal-based formulations have exhibited 
enhanced percutaneous penetration, leading 
to a more significant reduction in hair loss and 
an improvement in hair thickness and density. 
Also, in a study in 2022, Yoshihide et al. prepared 
minoxidil monocrystals with a size of 139 nm  [10]. 
Their results showed that minoxidil monocrystals 
significantly improved hair regrowth and overall 
hair health, providing a strong foundation for 
further development and clinical trials of this 
innovative treatment. As research progresses, 
minoxidil monocrystals may soon become a 
solution for people looking for effective and reliable 
hair growth treatments [11, 12].

MXD stimulates hair growth by opening 
potassium channels, inducing vascular 
endothelial growth factor (VEGF), and promoting 
prostaglandin synthesis in the dermal papilla [13-
15]. Moreover, there are various types of herbal 
extracts have been administrated as hair-regrowing 
treatment compounds such as saw palmetto, 
peppermint, and rosemary [16-18].

Rosemary oil, derived from the herb rosemary, 
is one of the most popular and widely used herbal 
hair-regrowing compounds. This essential oil is 
rich in antioxidants and has anti-inflammatory 
properties that help to promote hair growth. 
Rosemary oil contains caffeic acid, which stimulates 
blood flow to the scalp, and carnosic acid, which 
prevents hair loss by inhibiting the production of 
DHT (dihydrotestosterone), a hormone that causes 
hair follicles to shrink [19]. 

There are two primary routes for skin 
penetration: the intercellular and trans-cellular 
routes, which utilize the lipids in the stratum 
corneum and corneocytes, respectively [20, 21]. The 
accumulation of drugs near hair follicles is crucial 
for follicular growth and differentiation [22]. To 
enhance the bioavailability and concentration of 
active compounds in the epidermal pilosebaceous 

follicles, various types of topical drug delivery 
systems (TDDS) have been developed  [23-27]. The 
efficiency of MXD-loaded niosomes in topical skin 
treatments is greater than their unencapsulated 
forms in hairless mice, without skin penetration 
through hair [27]. Nanolipid carriers are a 
promising approach for targeting epidermal 
follicles due to their similarity to sebum structure, 
but they have limitations such as unspecific 
penetration from the skin epidermal layer and 
reduced transferred bioactive components [28]. 
Liposome-based delivery systems have a positively 
charged surface, which results in insufficient 
delivery into deeper epidermal layers due to the 
negatively charged upper skin epidermal layer 
and enhanced accumulation and localization of 
bioactive components at undesired epidermal 
regions [28-30]. Nanoparticles with a size of 
100 nm have been found to have significantly 
improved penetration into hair follicles [31]. These 
nanoparticles are suitable for targeted localization 
and controlled release of bioactive compounds in 
dermal therapies, as supported by studies carried 
out by researchers [32, 33]. The current study aims 
to discover a novel technique for incorporating 
effective localization and targeted delivery of 
bioactive substances into drug delivery systems 
that have not been explored before. In this regard, 
MXD-NPs have been produced using bead mill 
and ultrasonic methods. The structural and optical 
properties of these nanoparticles were investigated 
using various techniques, including dynamic 
light scattering (DLS)/Zeta, UV-Vis, Fourier 
transform infrared (FTIR), X-ray diffraction 
(XRD), Transmission electron microscopy (TEM), 
and Field emission scanning electron microscopy 
(FESEM)/Particle size analyzer (PSA)/Energy-
dispersive X-ray (EDX). Moreover, the cytotoxicity 
of synthesized MXD-NPs was evaluated on human 
dermal fibroblast (HDF) cell lines, and their hair-
growing activity was evaluated by observing hair 
growth on treated c57BL/6 mice.

MATERIAL AND METHODS
Materials

The substances hydroethanilic rosemary 
extract, methylcellulose (MC), and minoxidil were 
supplied by Merck company based in Germany. The 
phosphate buffer saline (PBS), Dulbecco’s modified 
eagle medium (DMEM), and dimethyl sulfoxide 
(DMSO) were obtained from Gibco Company. 
The 3-(4, 5-dimethylthiazol-2)-2, 5 diphenyl 
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tetrazolium bromide (MTT) was purchased from 
Merck company located in Germany. Additionally, 
a specific human dermal fibroblast cell line (HDF, 
code F-1049024) was provided by the Pasture 
Institute of Iran. 

Production of Minoxidil nanoparticles
To prepare MXD-NPs, 0.50 g of MXD powder 

and 1.0 g of MC powder were mixed and ground 
in an agate mortar for 2 hours at a temperature of 
5 °C. This mixture was added in 100 mL of distilled 
water, and then zirconia beads with a diameter of 
0.10 mm were added to the dispersed solution. 
The mixture was homogenized by subjecting it 
to ultrasonic waves for 4 min at a temperature of 
5 °C, alternately repeated 25 times. The resulting 
MXD-NPs were stored in the dark and at low 
temperatures.

Characterization of MXD-NPs
The size and stability of the MXD-NPs were 

measured using DLS and Zeta potential analysis, 
respectively. The stability test was performed 
twice, both immediately after preparation and 
after 3 months of storage in dark conditions at 
room temperature. To study the size, shape, and 
chemical composition of MXD-NPs, FESEM 
and EDX were employed. The crystal structure of 
MXD-NPs was analyzed using the XRD technique. 
Also, the morphology of MXD-NPs was observed 
through TEM images. The UV-Visible spectrum 
was utilized to examine the stability of MXD-NPs. 
The FTIR technique was employed to analyze the 
functional groups and molecular bonds present in 
MXD-NPs.

MXD-NPsʼ Cytotoxicity
The cytotoxicity of MXD-NPs was evaluated on 

human dermal fibroblast (HDF) cells. Specifically, 
2.5 × 10³ cells were seeded into 96-well plates and 
cultured in DMEM medium supplemented with 15% 
FBS, Gluta MAX (1%), antibiotic (streptomycin 100 
µg/mL-penicillin 100 µg/mL), and amphotericin B 
250 µg/mL. Different concentrations of MXD-NPs 
(1.5, 3, 6, 12, 25, 50, and 100 µg/mL) were added 
to each well and incubated for 24 h. Afterward, 
fresh MTT solution (5 mg/mL in PBS) was added 
to the treated cells and incubated for an additional 
3 h. To dissolve the insoluble formazan produced 
by the cells, DMSO (100 µL) was added to each 
well and incubated for 15 min while shaking. Then 
absorbance was measured at a wavelength of 570 

nm using an ELISA reader (Epoch, Model 680, 
Japan). The relative cell viability (%) was calculated 
using Eq. 1.

                                             
where “control cells” refer to the untreated cells, 

“treated cells” refer to the cells exposed to MXD-
NPs at different concentrations, and “blank” refers 
to the wells without any cells or treatments. 

Preparation and treatment of Hairless mice model 
(HMM) 

In this study, 36 male C57BL/6 mice, each 
weighing 18-20 g and six weeks old, were obtained 
from the Pastor Institute of Iran. The mice were 
housed in standard conditions with a 12-hour 
light/dark cycle, a temperature of 22 ± 1°C, and a 
humidity level of 60 ± 10%. The mice acclimated to 
their surroundings for a week before treatment and 
were then randomly assigned to one of six different 
groups receiving various treatments. The mice’ 
necks and backs were shaved (2 × 2 cm) and kept 
in separate cages. Following the topical application 
of MXD-NPs, the mice received a daily massage for 
two minutes in both hair growth directions based on 
their assigned group. Treatment was administered 
for 28 consecutive days. The first group did not 
receive any treatment (negative control), while the 
second and third treated groups received MXD-
NPs (0.5%) and 2% commercial MXD (positive 
control), respectively. The fourth group received 
only massage therapy. The fifth group was treated 
with a combined mixture containing MXD-NPs: 
Rosemary extract (9:1 V/V), and the sixth group 
received rosemary extract.

Measuring the MXD-NPs hair re-growth stimulating 
activity 

The hair regrowth and skin color changes in the 
shaved area of the HMM (human-mouse hybrid) 
were documented using a high-resolution camera, 
Nikon D5000, at various time points (0, 7, 14, 21, 
and 28 days). The images were analyzed using 
image-J software® and were assigned scores based on 
the following scale: 0 = pink color, that indicating 
no pigmentation, 1 = up to 20% darkening, 2= 20-
50%, 3 = 50–70%, 4 = 70–90%, 5 = 90–100%, and 6 
= 20–50% hair-regrowth [34, 35].

Measuring the HMM histopathology 
During a 28-day treatment period, 
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experimental mice underwent a therapeutic 
regimen. Following this intervention, the mice 
were humanely euthanized, and 2×2 cm2 biopsies 
were obtained and preserved in formalin. The 
specimens were subsequently forwarded to the 
pathology laboratory at Ghaem Hospital in 
Mashhad for paraffin embedding. The follicle count 
was determined at three distinct cross sections for 
each skin sample using a×40 magnification. The 
slides were then analyzed using Image-J software® 
(×40 magnification) to estimate the size and 
pigmentation of the follicles.

Statistics 
To assess the normality of the data, the Shapiro-

Wilk test was employed. For normally distributed 
data, an analysis of variance (ANOVA) was 
utilized. In binary comparisons, the Tukey test was 

implemented. For non-normally distributed data, 
the Kruskal-Wallis test was applied. Lastly, the 
Don-Bonferroni test was carried out to examine 
the statistical significance of pairs.

RESULT AND DISCUSSION
Characterization of MXD-NPs

According to FESEM imaging and size 
distribution analysis (PSA), the morphology of 
MXD-NPs was found to be spherical with a mean 
size of 49 nm (Fig. 1(a) and Fig. 1(c)). This result 
was confirmed by TEM/PSA (Fig. 1(b) and Fig. 
1(d)) and XRD techniques (Fig. 2(a)). The XRD 
diagram of bulk MXD crystals (Fig. 2a, right 
corner) exhibited sharp peaks at 2θ of 12.52°, 
15.64°, 16.44°, 19.62°, 21.62°, 22.62°, and 23.12°, 
which also were observed in the diffractogram of 
MXD-NPs. However, there were some differences 

 
 
 
 

Fig. 1. FESEM image (a), TEM image (b), PSA histogram of MXD-NPs FESEM (c) and TEM (d). 
  

Fig. 1. FESEM image (a), TEM image (b), PSA histogram of MXD-NPs FESEM (c) and TEM (d).
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in peak position and intensity, indicating a novel 
and improved arranged crystalline structure due 
to irradiation-mediated tensile stress (Fig. 2(a)) 
[36, 37]. The FTIR analysis further verified the 
crystalline alteration in MXD-NPs by showing 
lower intensities at specific wavenumbers compared 
to the commercial bulk MXD FTIR spectrum 
(Table. 1, Fig. 3). The peaks at 3423.64 cm-1 and 
1645.28 cm-1 corresponded to N-H stretching and 
bending bonds of primary amine, respectively, 
while the peak at 1462.16 cm-1 represented the C=C 
stretching bonds of the aromatic cycle. Also, C-N 
stretching bonds appeared at 1233.60 cm-1 [38].

The size of MXD-NPs was measured to be 
approximately 62 nm using DLS analysis (Fig. 
4(a)). The stability of MXD-NPs was confirmed 
through zeta potential analysis, which revealed a 
negative value of -46 mV (Fig. 4(b)). The presence 
of structural oxygen with a negative charge in the 

O-N bond of MXD is attributed to the new crystal 
form, which facilitates better permeation into the 
skin and enhanced stability in water solutions [29]. 
The UV-Vis technique was utilized to confirm the 
synthesis and stability of MXD-NPs over a three-
month storage period at 25 °C in dark conditions. 
The maximum wavelengths of MXD were observed 
at 229, 262, and 282 nm (Fig. 2(c)), and the gradual 
decrease in absorption intensity over three months 
indicates the chemical stability of MXD-NPs. 

Cytotoxicity of MXD-NPs
The safety of MXD-NPs was assessed on 

normal human dermal fibroblast (HDF) cells. 
The results revealed that after 24 h of incubation, 
there was no significant cytotoxicity observed at 
various concentrations of MXD-NPs (1.5, 3, 6, 12, 
25, 50, and 100 µg/mL) (Fig. 5). This is while the 
cells exposed to hydroethanolic rosemary extract 

 
 
 

Fig. 2. The XRD pattern (a), EDX (b), and UV-Vis spectra of synthesized MXD-NPs (c). 
  

Fig. 2. The XRD pattern (a), EDX (b), and UV-Vis spectra of synthesized MXD-NPs (c).
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Fig. 3. FTIR spectra of bulk MXD and synthesized MXD-NPs. 
  

Fig. 3. FTIR spectra of bulk MXD and synthesized MXD-NPs.

Tab. 1. The sharp peaks of pure MXD and synthesized MXD-NPs in FTIR spectra. 
 
 

Sample Vibrations (cm-1 ) 

Bonds N-H Stretching N-H Bending C=C Aromatic 
stretching C-N Stretching C-N Stretching N-H Stretching 

MXD-NPs 3423.07 1645.95 1462.05 1233.55 1210.00 758.58 

Pure MXD 3423.64 1645.28 1462.16 1233.60 1210.59 757.70 
 

Table. 1. The sharp peaks of pure MXD and synthesized MXD-NPs in FTIR spectra.

 
 

 

Fig. 4. DLS (a) and Zeta potential of MXD-NPs (b). 

Fig. 4. DLS (a) and Zeta potential of MXD-NPs (b).
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meaningfully reduced cell survival. Based on the 
findings, it can be due to the dominant toxicity of 
ethanol. The results showed that MXD-NPs are 
non-toxic on normal fibroblasts at concentrations 
less than or equal to 50 µg/mL. This suggests that 
doses of MXD-NPs below 50 µg/mL are not toxic 
to normal HDF skin cells.

MXD-NPs’ impact on hair-cycled stimulation 
To assess the impact of MXD-NPs on hair 

regrowth in C57BL/6 mice, their dorsal hair 
was shaved the day before treatment began. The 
hair regrowth was compared to that of untreated 
and MXD (2%) treated mice, which is currently 
considered the gold standard. The pink color in 
the images represents the shaved skin during 
the telogen phase, and the dark (gray) region 
represents the initiation of anagen [39-41]. After 
7 days of treatment, dark regions appeared on the 
dorsal skin due to follicles entering the anagen 
phase (Fig. 6(a)). Mice treated with MXD-NPs 
had wider dark regions compared to the control 
group. After 14 days, mice treated with MXD-
NPs had a greater hair regrowth area (80%) on 
their dorsal skin compared to those treated with 
standard MXD (70%). Interestingly, after 28 days 
of treatment, mice in the control group had fully 
regrown hair, while mice treated with MXD-NPs 
also had fully regrown hair on their dorsal skin. 

This suggests that MXD-NPs have the potential to 
replace current commercial MXD for improving 
hair follicle regrowth [42].

After a 21-day treatment period, the average 
regrowth of hair in the untreated mice was 
approximately 5.5 mm, as demonstrated in (Fig. 
6(b)). Mice that received MXD at a concentration 
of 2% (w/v) had a hair regrowth value of 7.2 
mm. In contrast, mice exposed to MXD-NPs at a 
concentration of 0.5% (w/v) exhibited a longer hair 
regrowth value of 7.9 mm. Even though the MXD 
formulation used in this study contained four 
times the concentration of bioactive ingredients 
compared to the synthesized MXD-NPs, the 
efficiency, and safety of the MXD-NPs were greater 
than those of the commercial formulation. The 
improved safety of MXD-NPs was confirmed by 
observing that there was no formation of non-
keratinized skin in the local area following topical 
application of MXD-NPs, which supports this 
claim (Fig. 6(b)) [33].

Pathology
The study found that the size and number 

of hair follicles in mice treated with MXD-NPs 
were significantly greater compared to those in 
the control groups (Fig. 7(a)). Additionally, the 
morphology of the epidermis was similar among all 
treatment groups (Fig. 7(a)). For further analysis, 

 

 

Fig. 5. Cytotoxic of MXD-NPs on HDF cell lines. 

  

Fig. 5. Cytotoxic of MXD-NPs on HDF cell lines.
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the authors presented pathological images of hair 
follicles showing an increase in the number of 
anagenic follicles and an increase in the follicular 
area. These images revealed anagenic follicles that 
were detectable following staining and confirmed 
the anagenic phase at the follicle cycle. The mean 
anagenic hair follicle counts for longitudinal 
sections of mice treated with MXD-NPs, MXD (2%), 
Rosemary extract, and MXD-NPs-Rosemary were 
25.5±2.90, 19.81±2.82, 15.27±3.9 and 21.29±3.16, 
respectively (Fig. 7(b)). The results suggest that 
MXD-NPs have the potential to stimulate hair 
development, as described in previous studies [43].

Hair growth algorithm in treated mice
To investigate the impact of MXD-NPs on hair 

growth, mice were randomly divided into 6 groups 
and topically treated with MXD, MXD-NPs, RSY, 
MXD-NPs+RSY, and massage-therapy every day 
for 4 weeks (28 days) compared with the negative 

control group. The areas where hair had grown and 
turned dark were observed. The mice that received 
MXD-NPs showed a significant increase in the 
darkened skin area compared to the group treated 
with 2% MXD. The back skin hair of the treated 
mice was found to be in the mature anagen phase. 
After 7, 14, 21, and 28 days of treatment, the hair 
growth score was evaluated. The mice that received 
MXD-NPs had significantly enhanced hair growth 
compared to the untreated group after 7 and 14 days 
of treatment. This is while the mice exposed to RSY 
and MXD-NPs+RSY did not exhibit significant 
hair regrowth improvement. The findings suggest 
that treatment with MXD-NPs may promote hair 
growth by accelerating the transition from early 
telogen to anagen in C57BL/6 mice compared to 
2% MXD and RSY treatment [43].

In recent studies, various types of hair regrowth 
inducers, including MXD, are widely consumed 
globally [44-46]. The nonpolar structure of MXD is 

 
 
 

Fig. 6. The anagen phase induction (a) and hair length pattern (b) of the C57BL/6 mice following 28-day 

MXD-NPs treatment (N=6); Data are expressed as mean ± SD. ***P <0.001. 

  

Fig. 6. The anagen phase induction (a) and hair length pattern (b) of the C57BL/6 mice following 28-day MXD-NPs treatment (N=6); 
Data are expressed as mean ± SD. ***P <0.001.
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Fig. 7. Skin photomicrographs of the hair follicle growth in male C57BL/6 mice receiving MXD-NPs, 
MXD,   RSY, MXD-NPs+RSY, Massage, and Negative control for 28 days. Histology results of the treated 
mice (original magnification × 400) (a), represent the number of anagenic hair follicle counts and follicle 
area in histopathology sections, respectively (b) and (c). (N = 6; *P < 0.05, **P < 0.01, and ***P < 0.001. 
  

 
 
 
Fig. 8. Hair growth scores scoring index (0 = no growth (pink color), 1 = up to 20% darkening, 2= 20-50%, 
3 = 50–70%, 4 = 70–90%, 5 = 90–100%, and 6 = 20–50% hair-regrowth) (a) and Photometric evaluation 
of C57BL/6 mouse post-shaved hair growth after 0, 7, 14, 21, and 28 days (N= 6/mouse) (b). 
 

Fig. 7. Skin photomicrographs of the hair follicle growth in male C57BL/6 mice receiving MXD-NPs, MXD,  RSY, MXD-NPs+RSY, 
Massage, and Negative control for 28 days. Histology results of the treated mice (original magnification ) (a), represent the number 
of anagenic hair follicle counts and follicle area in histopathology sections, respectively (b) and (c). (N = 6; *P < 0.05, **P < 0.01, and 

***P < 0.001.

Fig. 8. Hair growth scores scoring index (0 = no growth (pink color), 1 = up to 20% darkening, 2= 20-50%, 3 = 50–70%, 4 = 70–90%, 5 
= 90–100%, and 6 = 20–50% hair-regrowth) (a) and Photometric evaluation of C57BL/6 mouse post-shaved hair growth after 0, 7, 14, 

21, and 28 days (N= 6/mouse) (b).
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commonly solved using nonpolar solvents, which 
have potentially toxic impacts. To address this issue, 
the current study substituted nonpolar solvents with 
polar types by crystalizing the structure of MXD. 
Additionally, the follicular uptake of crystal MXD 
was compared with its commercial form. The results 
indicate a significant improvement in hair regrowth 
in mice treated with crystal MXD compared to 
massage therapy and commercial MXD.

MXD was initially introduced as a hypertension 
treatment compound in the 1970s [47, 48]. It is a 
peripheral vasodilator that reduces peripheral 
vascular resistance and decreases blood pressure. 
MXD is also known for its hair regrowth properties 
[49]. However, hypertrichosis, a common side 
effect of MXD consumption, has been reported 
[50-52]. MXD enhances blood circulation near hair 
follicles, prolongs the anagen phase, and minimizes 
the impact of testosterone on hair follicles by 
converting it into another androgen [45, 49, 53-55]. 
It can also open potassium channels, release nitric 
oxide, and enhance blood flow around hair follicles, 
which are considered anagen phase prolonger 
factors [47, 56, 57]. Additionally, several adenosine 
receptors in dermal papilla cells (DPCs) and 
adenosine ligands act as MXD-mediated vascular 
endothelial growth factor (VEGF) production and 
stimulate hair growth [58].

The commercially available topical formulations of 
MXD contain ethanol and propylene glycol and have 
been associated with various types of skin damage 
such as rash, pruritus, dandruff, and allergic dermatitis 
[57, 59, 60]. To address this issue, several nano-based 
formulations containing MXD have been developed 
as topical drug delivery systems. These include 
penetration-enhancing vesicles (140-195 nm) [61, 
62], foams (260-280 nm) [63, 64], lipid nanocarriers 
(177-194 nm) [65-67], microneedles (4150-4500 
nm) [68-72], niosomes (214-252 nm) [27], and 
microbubbles [68]. The crystallized form of MXD has 
also been developed to improve its uptake. The results 
indicate enhanced hair growth rates in mice treated 
with MXD-NPs compared to commercial MXD and 
other non-pharmacological treatment strategies such 
as massage therapy. Additionally, the MXD-NPs did 
not exhibit significant cytotoxic impacts on HDF 
normal cell lines.

CONCLUSIONS 
The use of nanostructures of minoxidil has been 

studied in previous research, with promising results. 
The MXD-NPs showed a significant increase in hair 

growth compared to the commercial formulation. 
This is likely due to the enhanced penetration and 
retention of the drug in the hair follicles, as well as 
the reduced irritation and toxicity associated with 
nanoparticle delivery. Therefore, the development 
of MXD-NPs represents a significant advancement 
in hair regrowth therapy. In other words, the MXD-
NPs have a unique capability to be absorbed through 
the skin, which could increase their uptake and 
decrease unwanted side effects, offering a safer and 
more effective alternative to traditional minoxidil 
formulations. The smaller size of the MXD-NPs 
not only improves their chemical stability but also 
enhances their ability to be absorbed through the 
skin and promote hair follicle growth. However, 
further research is necessary to understand the 
specific mechanisms by which MXD-NPs affect 
hair follicle metabolism and proliferation.
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