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Objective(s): Exosomes, as membrane-enclosed nanovesicles (30–150 nm), 
transports active biomolecules between various cells. As natural nanoparticles 
(NP), they serve a key role in the diagnosis, treatment, as well as prevention of 
diseases. Recently it has been verified that MSC-derived exosomes are capable of 
adjusting immune cells' biological processes. We investigated the effects of the 
MSCs-derived exosome on T cell proliferation.
Methods: xosomes isolated from the supernatant of bone marrow-MSC. The 
ultrastructure and shape of exosomes were evaluated via transmission electron 
microscopy (TEM), and CD9, CD63, and CD81 were detected by Western blotting. 
Then, we examined the effects of MSC-derived exosome on the proliferation of 
the T cells by MTT assay. Moreover, the expression levels of the PI3K, Akt, MAPK, 
and ERK were estimated at mRNA levels by Real-Time PCR. 
Results: We showed that MSCs-derived exosome inhibited T cell proliferation 
based on the MTT assay results. Real-time PCR analysis also exhibited that 
exosome co-culture resulted in down-regulation of PI3K, Akt, MAPK, and ERK 
expression levels.
Conclusions: MSCs-derived exosome inhibits T cell proliferation by negative 
regulation of the survival- and proliferation-involved PI3K/Akt and MAPK/ERK 
pathway in vitro.
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INTRODUCTION
Mesenchymal stem/stromal cells (MSCs) as 

multipotent adult cells were firstly discovered 
by Friedenstein while investigating the BM [1]. 
Various studies have indicated that MSCs are 
capable of stimulating an immunosuppressive 
effect largely by suppressing T cell proliferation, 
averting B cell activation, and targeting dendritic 
cells (DCs) [2]. The inspiring competencies of 
MSCs to modify immune response confer their 
significance to decreasing immune responses by 
a diversity of mechanisms, more importantly, 
negative regulation of T cell induction and 
proliferation [3, 4]. MSCs also release extracellular 
vesicles (EVs), including nano-scale exosomes, 
and high quantities of cytokines and growth 
factors [5-7]. Exosomes, as nano-sized vesicles 
(30-100 nm in diameter), contains DNA, mRNA, 
miRNA, proteins, and other important molecules 
and ultimately modify recipient cells’ biological 
process [8]. MSCs-derived nano-sized exosomes 
present biological actions like the parental cells 
while prohibiting various risks correlated with cell 
transplantation [9, 10].

Like parental MSCs, MSC-derived exosomes 
target T cells, B cells, NK cells, and macrophages 
activity mainly by miRNA delivery [11-13]. The 
MSCs activation results in is the secretion of anti-
inflammatory biomolecules, such as indolamine 
2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), 
IL-10, NO and TGF-β [14-16]. These cytokines 
target immune cells and facilitate the inhibition 
of immune response. A clinical trial exhibited that 
MSC-derived exosomes attenuate the potential of 
peripheral blood mononuclear cells (PBMCs) to 
secret pro-inflammatory bimolecules in vivo [8, 
17]. Based on the literature, MSC-derived nano-
scale exosomes might promote IL-10 and TGF-β1 
release from PBMCs, thus inducing Tregs activity 
[8]. This immunomodulatory competence of 
MSCs-derived exosomes opens new avenues for 
the management of inflammatory disease. In this 
light, MSC-derived exosomes have the unique 
capability to moderate immunological responses 
upon organ transplantation and graft-versus-host 
disease (GvHD) [18]. 

In the current study, we examine the potent 
effects of the MSCs-derived exosome on immune 
T cells in vitro and shed light on the possible 
corresponding mechanisms.

MATERIAL AND METHODS 
Cell culture 

Bone marrow-MSCs were acquired from 
Royesh Stem Cell Biotechnology Institute Cell Bank 
(Tehran, Iran) and cultivated in DMEM (Gibco 
Laboratories) with 10% FBS and 1% penicillin/
streptomycin. Cells were kept at a 37°C humidified 
atmosphere with a 5% CO2 incubator.

For T cell isolation, human blood was procured 
from a healthy donor. Then, ficoll density gradient 
centrifugation was applied to separate the PBMCs 
by Lymphodex. T cells were isolated by MACS 
concerning the manufacturer’s guidelines.   Cell 
cultivated in RPMI 1640 media including 10% FBS, 
1% penicillin/streptomycin, as well as 1 μg/mL 
phytohemagglutinin (PHA).

Exosome isolation
Non-scale exosomes were separated from 

the serum-free conditioned media utilizing 
the MagCapture™ Exosome Isolation Kit PS 
(FUJIFILM Wako). The medium was centrifuged 
at 10 000 × g for 30 min to eradicate other EV. 
Cleared supernatants were filtered by 0.22 mm 
filter membranes and finally concentrated.

Transmission electron microscopy (TEM)
Exosome morphology was assessed utilizing a 

transmission electron microscope (TEM).

Western blotting
To characterize exosome markers CD9, CD63, 

and CD81, exosomes and MSCs were lysed in 
RIPA buffer, including the protease inhibitor 
(Thermo Scientific). Then, the lysate proteins were 
run on 10% SDS-polyacrylamide gels and, after 
that, moved to PVDF membranes. Then, primary 
antibodies were applied to recognize proteins: 
anti-CD63, anti-CD9, and anti-CD81. Following 
incubation with secondary antibodies (HRP-
conjugated secondary antibody), the detection 
phase was completed utilizing the Pierce ECL 
Western Blotting Substrate.

MTT assay
For exosome co-culture, 100 ng/ml exosomes 

isolated from MSCs were added to the T-cell 
containing medium. Within 24, 48, 72, and 96 
hours, 20 µl of 5 mg MTT /ml medium was added, 
and cells were kept at 37 °C for 4h. Also, 100 μL of 
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10% SDS in 0.01M HCl solution was used, aiming 
at dissolving crystals. Finally, the OD of wells was 
estimated at 570 nm using an ELISA reader.

RNA extraction and cDNA synthesis
Total RNA from T cells was extracted utilizing 

the RNX Plus solution kit (Sinaclon, Tehran, Iran). 
Upon cell lysis, the products were maintained 
at -70°C and thawed once RNA isolation was 
prerequisite. A high-capacity kit (Bioneer, CA) 
was applied to generate cDNA from the isolated 
RNA. 

Real-Time PCR
Real-time PCR was conducted utilizing the 

SYBR Green reagent (Thermo Fisher Scientific). 
Relative gene expression was estimated by the Pfaffl 
method (Pfaffl, 2012). The designed primer pairs 
are cited in Table 1.

Statistical analysis
Consequences are indicative of three 

independent tests, and values are shown in 
mean ± SEM. Β-actin was selected as an internal 
control. Student T-test was exploited to determine 
the statistical differences. All analyses were 

accomplished by SPSS software. P values < 0.05 
were measured as statistically significant.

RESULTS AND DISCUSSION
Exosome characterizing

Then, TEM revealed isolated exosome had a 
spherical shape (Fig. 1A). The western blotting 
analysis also demonstrated the existence of CD63, 
CD9, and CD81 in isolated exosomes (Fig. 1B)

MSCs-derived non-scale exosome inhibits T cell 
proliferation

In this step, human T cells were co-cultured 
with exosomes to evaluate the potent effects of the 
exosome on their proliferation. Based on MTT 
assay results, exosome inhibits T cell proliferation 
in co-culture conditions (Fig. 2). Results showed 
that in col-culture conditions, nano-scale exosome 
resulted in a drop in proliferation of T cells within 
48, 72, and 96 but not 24 hours of exposure (Fig. 2). 
This reduction was time-dependent.

Similarly, Li et al. found that Wharton’s Jelly-
derived MSCs (WJMSCs) derived exosomes could 
inhibit T cell proliferation in vivo [19]. Other studies 
have indicated that MSCs-derived microparticles 
(MPs) and also exosomes (NPs) induced an anti-

Table 1. Candidate genes' primer pairs for Real-Time PCR 
 

Gene Primer (5′-3′) 

ERK 
F                        ACACCAACCTCTCGTACATCGG 
R                       TGGCAGTAGGTCTGGTGCTCAA 

MAPK 
F                        ACACCAACCTCTCGTACATCGG 
R                        TGGCAGTAGGTCTGGTGCTCAA 

PI3K 
F               GCAGGTTCCTTCAGTCCTACTCCAGGC 
R              GCCCAGTCAGCTGATACCATTTAACCG 

AKT 
F                          TCTATGGCGCTGAGATTGTG 
R                           CTTAATGTGCCCGTCCTTGT 

Β-actin 
F                          AGAGCTACGAGCTGCCTGAC 
R                          AGCACTGTGTTGGCGTACAG 

 

Table 1. Candidate genes’ primer pairs for Real-Time PCR

 

Figure 1. Exosome characterizing by TEM image (A) and western blotting (B). 

   

Fig. 1. Exosome characterizing by TEM image (A) and western blotting (B).
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inflammatory role on T lymphocytes. However, 
NPs were more effective than MPs in deterring 
inflammation in vivo [20]. These competencies of 
MSCs-derived nano-scale exosome makes them a 
rational plan to treat COVID-19 [21, 22].

MSCs-derived non-scale exosome down-regulates 
PI3K/Akt pathway in activated T cell

Real-time PCR analysis was conducted to assess 
the effect of the nano-scale exosome on T cell 
proliferation-involved genes. Accordingly, T cells 

co-cultured with exosomes, and the expression 
of the PI3K and Akt genes at mRNA levels were 
estimated within 24-96 hours of exposure (Fig. 3). 
Based on the results, exosomes down-regulated 
the expression of PI3K genes within 72 and 96 but 
not 24 and 48 hours of co-culture (Fig. 3). Besides, 
exosome reduced Akt gene expression within only 
96 hours of co-culture.

Previous studies signify the key role of PI3K/Akt 
pathway in activating and proliferation of T cells. 
The PI3K-AKT pathway exerts several biological 

 

Figure 2. MTT assay results of the effects of exosome co-culture on  T cell proliferation. 

   

Fig. 2. MTT assay results of the effects of exosome co-culture on  T cell proliferation.

 

Figure 3. Real-Time PCR results about the exosome effects on PI3K and Akt gene expression in 

T cells. 

   

Fig. 3. Real-Time PCR results about the exosome effects on PI3K and Akt gene expression in T cells.
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responses and is complicated in the immune 
responses and lymphocyte development [23, 24]. 
Lacking PI3K subunits or Akt results in the blockage 
of T cell development [25]. The production of PIP3 
by PI3K triggers the recruitment and induction of 
other key proteins in T cells  [26]. Thus, negative 
regulation of this pathway, as shown upon exosome 
co-culture, deters their inflammatory responses.

MSCs-derived non-scale exosome down-regulates 
ERK/MAPK pathway in activated T cell 

Real-time PCR analysis was conducted to assess 
the effect of the nano-scale exosome on T cell 
proliferation-involved genes. Accordingly, T cells 
co-cultured with exosomes, and the expression of 
the ERK and MAPK genes at mRNA levels were 
estimated within 24-96 hours of exposure (Fig. 4). 
Results revealed that exosomes inhibited ERK and 
MAPK genes within 48, 72, and 96 but not 24 hours 
of co-culture (Fig. 4).

MAP kinase axes are major pathways triggered 
by TCR stimulation and thus serve a central role 
in T-cell responses [27]. Further, these pathways 
contribute to T cell survival, proliferation, and 
differentiation. Our findings are consistence 

with other reports indicating that MSCs-derived 
exosomes could inhibit various cell proliferation by 
targeting the MAPK pathway [28]. 

CONCLUSION
It has previously been found that MSCs-derived 

exosomes could inhibit T cell proliferation in vitro 
and in vivo, making them a rational strategy to 
induce immunomodulation. Herein, we showed 
that this effect is mediated by targeting two key 
signaling axis, PI3K/Akt and MAPK/ERK. It seems 
that exosome therapy could result in a promising 
outcome in the near future.
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