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When a natural or synthetic material is used to replace a living structure or 
becomes a part of a biomedical device, it is termed as a biomaterial. The utility 
of biomaterials has expanded to areas of tissue, blood, biological fluids etc. 
Replacement and repair of skeletal parts is one of the major areas of application 
of biomaterials. This review article focuses its attention on the use of biopolymers 
based nanocarriers for delivering immunomodulatory agents. The role of 
biopolymers is to modulate, suppress and stimulate innate or adaptive immune 
system. Based on the data available, nanoparticles can direct the immune system 
by improving cellular uptake efficiency and modulating the immune system. 
Nutrients and trace elements such as Se, Mg, etc., can boost the immune system. 
Plant derived immunomodulators are known and nanosystems find applications 
as a carrier system for immunomodulatory drugs. This review details the various 
nanocarriers and the factors affecting the immunomodulation of nanoparticles. 
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INTRODUCTION
When a natural or synthetic material is used 

to replace a living structure or become a part of 
a biomedical device such that it can interact with 
the biological system it is termed as a biomaterial. 
In another sense, it is a non-viable material that 
can treat, replace and augment tissues, organs 
and body functions [1]. The utility of biomaterials 
can be further expanded to areas of tissue, blood, 
biological fluids, used in prosthetics, diagnostics, 
and therapeutics and also for energy storage 
applications. A primary requirement though is 
that it should not adversely affect the organism 
and its components [2, 3]. Replacement and repair 
of skeletal parts such as knee, hip, joints, elbow, 
vertebrae, and teeth are one of the prominent 
applications of biomaterials, which till recently 
was through non-biological materials. Combining 
the areas of medicine, engineering, and material 
science, the use of biomaterials has expanded 

to include materials of natural origin and use in 
immune system modulation [4]. Through this effort, 
biomaterial research has spread to management of 
diseases including regenerative medicine [5].

A vast range of materials covering broad areas of 
synthetic or natural origin, in solid or liquid forms 
are today used as biomaterials. Researchers have 
employed metals, polymers, ceramics, composites, 
proteins, cells, tissues, and several other materials 
as bioinert, bioresorbable and bioactive materials 
[6]. Biomaterials are today permitted for use in a 
vast number of ways in the bio medical industry 
[7]. Polymer based biomaterials is a larger class of 
biomaterials that can be tuned to chemical, physical, 
surface properties and made as biomimetic 
materials. Polymers can be biodegradable and 
non-biodegradable [8]. Classical examples of 
non-biodegradables include polyethylene (high 
and low density), polyethylene terephthalate, 
polypropylene, polystyrene and so on [9]. The 
biologically derived (or natural) polymers and 
synthetic polymers are both extensively considered 
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as biodegradable polymeric biomaterials.  Some 
examples of naturally-derived polymers are 
collagen, albumin, cellulose, agarose, alginate, 
chitosan, heparin, dextran, hyaluronic acid, etc. 
[10]. The advanced class of biomaterials is called 
smart materials. The first “smart material” (i.e., 
environmentally responsive) polymeric material 
was probably a pH-sensitive, artificial muscle-like, 
swelling– de swelling hydrogel developed in 1950 by 
Kuhn et al. [5, 11]. Stimuli-responsive materials are 
advanced class of biomaterials, which changes their 
physical and chemical properties according to its 
environment. This kind of polymeric biomaterials 
are referred as stimuli-responsive polymers, or it 
can also be known as smart or intelligent polymers. 

The immune system of human body defends 
the integrity of the body against external invaders 
or pathogens and internal factors [12] by relying 
on diversity, resilience to generate, maintain and 
resolve responses during an injury, infection or 
disease [13]. Immune system can be adaptive 
or innate and are first signs of response to an 
infection or danger. It is known that myeloid 
cells, dendritic cells and macrophages can induce 
and regulate immune responses [14] and the cells 
responsible for innate responses are phagocytes, 
dendritic cells, mast cells, basophils, eosinophils, 
NK cells as well as lymphoid cells (innate).  
Innate,  adaptive systems can integrate signals to 
transfer information relating to conservation of 
immunity and nonspecific actions for suppressing 
immune response or providing immunity [13]. 
The pathogen like microbes can be phagocytosized 
by phagocytes (neutrophils and macrophages) 
where it engulfs and kill them through bactericidal 
pathways and thus create a first-line defense 
[15]. This innate immunity activates when cells 
recognize pathogen-associated molecular pattern 
(PAMP) molecules through their receptors. PAMP 
recognition triggers changes in gene expression, to 
release of chemokines, cytokines, and eventually 
for pathogen clearance in the body initiated 
by  released cytokines that provide signals to the 
phagocytic cells (macrophages, neutrophils) [16, 
17]. The other kind of immune system cells are 
adaptive immune cells that  includes antigen-
specific T cells, which activates and mediates 
proliferation via antigen presenting cells (APCs), 
and B cells that eventually differentiate into plasma 
cells to produce antibodies [18].

Biomaterials are engineered in such a way 
that it respond to various external and internal 

stimuli - pH, temperature, mechanical, electric or 
magnetic fields, and in the presence of different 
small molecules and biomolecules, etc.  [19]. 
Triggering signals via signal molecules to the 
immune system such that an immune response 
is activated against a disease condition, or an 
unwanted self-antigen is one of the new areas of 
biomaterial usage incorporating these molecules 
works [20]. Today, a branch of biomaterials, viz., 
immunomodulatory biomaterials aim at active 
modulation of immune response over evasion/
suppression. The biomaterials carrying signalling 
molecules can create a desired activation state or 
phenotype within the host immune cells [21]. The 
class of immunomodulators actions are modulate, 
suppress, and stimulate innate or adaptive immune 
system. They are also called as immunoaugmentors 
and biological response modifiers. 

Nanotechnology is an emerging and 
technologically developing field, with significance 
in medical field such as medical diagnostics. 
Nanostructures has great potential in various health 
care applications as biosensors, diagnostic tools, 
and it also act as a vehicle for targeted drug delivery 
[22, 23]. Nanoparticles (N.P.s) are engineered 
artificially at nanometer-length scale, with the size 
of 1–100 nm [24]. The potential benefits of N.P.s 
in biological application are categorised depending 
on their extensive properties including size/shape, 
hydrophobicity, and surface charge. Because of 
these properties, N.P.s can direct their immune 
system by improving cellular uptake efficiency and 
modulates the activity of immune system [25]. As 
nanomedicine, these nanoparticles can have active 
molecules that can be identified by immune system 
and inturn responsible for immunostimulation 
or immunosuppression according to the function 
of molecules incorporated. Immunomodulation 
effects rely mainly N.P.s on the role of it as 
carriers according to different applications. 
However, some nanoparticles are first recognized 
by the phagocytic cells (e.g., macrophages, 
neutrophils) and there is an interaction between 
nanoparticles and immune system that leads 
to immunomodulation or immunosuppression 
effects and therefore choice of nanocarriers play a 
significant role. They either promote inflammatory 
reactions, or increase the susceptibility of host to 
infectious and inflammatory diseases. Under such 
circumstances, N.P.s with immunosuppression 
effects could be used as therapeutic agents 
for inflammatory and autoimmune diseases. 
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Contrastingly, N.P.s modulates immune response 
against foreign particles that results in activation 
of immune system, so these particles can also be 
used as vaccines or vaccine adjuvants [26].  Site-
specific delivery (drugs, genes and peptides, etc.), 
increase in stability, reduced side effect, these 
are the advantages of nanoparticles-based drug 
delivery system [27]. Nanoparticles are engineered 
or tailored for their immunomodulatory and 
immunostimulatory effect based on their ability 
to modulate innate or adaptive immune responses. 
The upcoming section will describe about the 
immune response and status on biopolymers and 
their immunomodulatory role.

WHAT IS IMMUNE RESPONSE?
The immune system responds to the antigens 

(usually proteins) or any toxic substances which 
invade human body. Antigens involves proteins 
and toxic substances like toxins, chemicals, drugs, 
or any other foreign particles and is present on 
the surface of the cells, viruses, fungi, or bacteria. 
These antigens in due course are recognized and 
destroyed by immune system. Protection of host 
from external threats is by immune cells that act as 
a biological network by maintaining homeostasis. 
Innate and adaptive immune system are the two 
main consequent factors of immune system. 
Innate immune response evokes a nonspecific 
inflammatory immune response and adaptive 
immune system provide specific immune response 
which involve antigen specific response and 
develops a abiding memory [24]. 

Innate immune response
Innate immune defense mechanism are present 

in the tissues like skin, mucosal linings of the 
respiratory and gastrointestinal (GI) tract and is 
also present at the interface which interact with 
the exterior environment. Innate immune system 
a non-specific defense system, according to its 
mechanism consists of various molecular and 
cellular components which come into contact with 
the external pathogens. The molecular component 
involves cytokines (interleukins, TNF, etc.) and 
cellular components (phagocytes and leukocytes) 
[28]. Neutrophils and APC as discussed earlier, 
identify PAMPs through PRRs to recognize the 
liable pathogens and after identification, the 
pathogen are engulfed by the cells, causing an 
inflammatory response [29]. Directing the host 
cell to identify between its and other inflammatory 

immune response requires an activated PRRs, and 
these PRRs are expressed on many receptors. By 
coping the interaction with these receptors they are 
responsible for the whole immunological responses 
[30].

Adaptive immune response
Adaptive immune responses are the reason 

for adequate immune response against infectious 
diseases. Unlike  innate  immune  responses, 
the adaptive responses are particular to the 
pathogen  that induced them [18]. Adaptive 
immune system consists of lymphocytes of stem 
cells that provide accurate and long-standing 
immune response to antigen or pathogens. They 
have a significant role in humoral immune response 
and dictate the cell-mediated immune responses 
[31]. Dendritic cells from lymph nodes exhibit 
non self antigens through major histocompatibility 
complex (MHC) recognised by T cells. T cells 
(CD8+) are activated by antigens (exogenous) 
present on MHC-I molecules whereas, T cells 
(CD4+) activated by MHC-II molecules and other 
T cells subgoups can be activated based on the 
antigens or co-modulation signals that included. 
The antigen specific receptors of lymphocytes are 
B cell and T cell receptor. These receptors develop 
during somatic gene recombination, is a novel 
feature and the role of both T and B cells has been 
extensively studied [25].

Role of immune response to nanoparticles
In today’s interest and need, N.P.s and 

engineered nanomaterials (N.M.s) shows a great 
potential in regulating immune system. Interaction 
of N.P.s, and N.M.s with the immune system results 
in triggering the inflammation [32]. The N.P.s and 
N.M.s involved in nanomedical field (e.g drug 
delivery systems), when once inside the body are 
recognized and eliminated by immune system, 
especially macrophages. These N.M.s or N.P.s when 
properly engineered are involved in modulating 
immune system by escaping the immune 
surveillance [33]. Immunogenic properties of N.P.s 
when used as carriers of vaccines, helps to amplify 
the antigenic properties of conjugated poor antigens 
that does not elicit proper immune response. These 
antigenic properties of N.P.s/N.M.s can vary based 
on its size, and charge (surface) and can be used 
as adjuvants. Antigen loaded N.P.s induces Th1  
(IFN
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models, lymphokine- activated killer cell activity, NK cells activity can be stimulated by giving 

selenium as a supplementation leading to delayed-type hypersensitivity response. Human 

(adult) requires supplementation of around 100 μg/day selenium to improve plasma level 

concentration, which inturn improves GPX (cytosolic and phospholipid) activity. Its aslo tends 

to increase other type of host immune responses (IFN- production, total percentage of T cells 

specially helper T cells) [46]. When deficiency of selenium, it leads to the progression of viral 

diseases by and rising the virulence of infectious agents. These viral pathogens cause 

cardiomyopathies during the infections that lead to secondary complications. An 

epidemological study indicated that by consuming 100 - 200 μg selenium (example - 

selenomethionine) daily for two years, it lowers the cause of cancers in large intestine, prostate, 

breast and lungs due to immunomodulatory roles [47]. A vast number of epidemiological, 

experimental, and clinical studies has proved the protective role of selenium against malignant 

tumors [48].  

3.1.2 Zinc 

Zinc is one of the trace elements and is an essential component for all organisms. In immune 

system, the immune cells require sufficient amount of zinc for differentiation, and proliferation 

of cells [49]. The sensitivity of the cells to pathogens (viruses like HIV) is increased majorly 

due to lack of zinc in human body. The pathological or diseased conditions such as diarrhea, 

renal deficiency and gastrointestinal diseases were caused based of the depletion of the 

elements. Other than this, Acrodermatitis enteropathica is the most well-known example of 

zinc deficiency in humans. This disease is classified under inheritable disease (autosomal 

recessive) leading to thymic atrophy, and sensitivity to other pathogens (like bacteria, fungi 

and virus) based infections [50]. The homeostasis of zinc is controlled by transporters of the 

zinc like metallothioneins, that can be regulated by storage and distribution of zinc and it also 

behave as signalling molecules, which transduce various signalling cascades according to their 

external stimuli [51]. Recently, an evidence on zinc has disclosed receptor expression was 

regulated by NF-κB and receptor is specifically responsible for maintaining natural immune 

defences [52]. Reports indicated that the zinc transporters and its targeting and  release zinc 

from receptors plays a very crucial role in normal sustainence else can be linked to diseases 

[53]. The nonspecific killing of normal cells by natutal killer cells are generally promoted by 

deficient zinc and this effect is prevented in zinc deficient patients by depletion of this natural 

killer cell lysis activity [54]. According to immunomodulatory effects, supplementation of zinc 

can modulate the T cells based immune reactions in peripheral blood mononuclear cells and is 

) and Th2 cells (IL-4) based response on their 
recognition by the immune cells, and this activity 



198

S.P. Naseem Banu and S. Narayan / Biomaterial Based Nanocarriers for Delivering Immunomodulatory Agents

Nanomed Res J 6(3): 195-217, Summer 2021

of N.P.s also depends on its dimension of the 
nanostructure. To stimulate maturation of T cells, 
and B cells by N.P.s, it  can done either directly or 
indirectly by surface receptors on T and B cells or 
APCs [34]. The classic properties of N.P.s includes 
its size, surface charge and immunogenicity that 
proves them to be used in or as nanomedicine and 
also as a vaccine delivery agent. Particularly non 
soluble N.P.s are more appropriate for controlled 
and sustained delivery of antigens and it also 
prevent vaccines from degradation [35].

BIOMATERIAL BASED IMMUNOMODULAT-
ORY AGENTS

Biomaterials has wide range of materials 
ranging from biodegradable molecular materials 
to asynthetic materials (artificially synthesized) 
[36]. Sometimes biomaterials involves the 
initiation of adverse immune reaction to the 
antigens, which results in inflammation, tissue 
degradation, impairment of healing, and fibrotic 
encapsulation or even destruction of medical 
devices [37]. The advantages being, in recent 
research in immunotherapy and vaccination 
fields revealed that it can modulate or activate the 
immune system in absence of stimulation signals 
and these properties of biomaterials in this areas 
trigger them to act as a carrier of molecules or as 
such stimulate the innate immune system pathways 
[38]. By enhancing the properties of biomaterials 
with various bioactive molecules, it can be used 
as the carriers to deliver modulating agents 
by easily eluding the immunological barriers. 
These materials also show valuable insight in 
other fields like regenerative medicine and tissue 
engineering. These can be explored to be used  
with carrier properties of vaccine or as adjuvants 
and immunotherapeutic carriers that can further 
modified to regulate immune response [39]. In 
the absence of immunostimulatory signals, some 
biomaterials have the ability to activate immune 
system and also their inflammatory pathways, the 
responses of biomaterials can be altererd by altering 
physiochemical properties [38]. To evaluate the 
immunomodulatory activity of polymers, it can be 
assessed by culturing dendritic cells in polymeric 
biomaterial films. The polymers involved in the 
study are synthetic (PLGA) and natural polymers 
(chitosan, HA, alginate, etc.), and these enhanced 
the markers present on the surface. For the 
maturation of dendritic cells (D.C.s), the markers 
involved are CD40 and MHC II complex proteins. 

These signals oversee antigen presentation to 
lymphocyte cells and recognise stimulatory 
markers [40]. Biomaterials can involve synthetic 
and natural materials like plant-derived materials, 
biopolymers, trace elements (selenium, zinc, etc.). 
These materials are involved in stimulating the 
immune responses.

 
Nutritional immunomodulators

A nutrient element which is essential to 
modulate immune system is fed with dietary 
supplement at higher levels than the established 
level to alter and modulate the immune responses. 
A large number of nutrients helps to boost the 
immune system and their effect is totally based 
on their amount and types involved in the diet, 
and these immunomodulators caused different 
turns in response of immune system [41]. The 
immune system to maintain homeostasis needs 
micronutrients and macromolecules. Some of the 
available trace elements like zinc, selenium, copper 
are considered as a required dietary supplement, 
which shows synergetic role and comes under 
micronutrients category and these are involved in 
modulating the responses of immune system [42].

Selenium
Selenium is a trace element also known to 

occur as as selenoproteins. It is involved in human 
dietary systems which shows a great importance in 
human health systems. The selenocysteine is the 
one present as the 21st amino acid of this protein. 
A proper enzymatic function of this is required 
to regulate immune system homeostasis. A major 
component of metabolic pathways and functioning 
of immune defense systems. Its antioxidant 
properties take part in a major role in modulating 
the functioning of immune systems. Chronic 
diseases like cancers, cardiovascular disease, and 
male fertility, increase risk of viral infections, 
decreased thyroid function, neurological disorders, 
and infalmatory disorders are caused by low level 
of selenium intake in short known as selenium 
deficiency [43, 44].  It is estimated that one billion 
population have insufficient intake of selenium. 
Recommended dietary allowance and daily intake 
levels, determine the sufficient amout of selenium 
intake per day and it is necessary for maximal 
plasma Glutathione Peroxidase (GPX) activity [45].

Selenium status shows a major impact on the 
cellular components of immune system. This can 
respond infectious diseases and other diseases and 
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accordingly modulate our immune system and 
prepare our immune system. The tissue systems 
such as liver, spleen, and lymph nodes contain a 
notable amount of selenium and when the levels 
are as per standards,  it shows a beneficial effect 
[44]. To increase T cell proliferation response 
in experimental animal models, lymphokine- 
activated killer cell activity, NK cells activity can be 
stimulated by giving selenium as a supplementation 
leading to delayed-type hypersensitivity response. 
Human (adult) requires supplementation of 
around 100 μg/day selenium to improve plasma 
level concentration, which inturn improves GPX 
(cytosolic and phospholipid) activity. Its aslo tends 
to increase other type of host immune responses 
(IFN-
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models, lymphokine- activated killer cell activity, NK cells activity can be stimulated by giving 

selenium as a supplementation leading to delayed-type hypersensitivity response. Human 

(adult) requires supplementation of around 100 μg/day selenium to improve plasma level 

concentration, which inturn improves GPX (cytosolic and phospholipid) activity. Its aslo tends 

to increase other type of host immune responses (IFN- production, total percentage of T cells 

specially helper T cells) [46]. When deficiency of selenium, it leads to the progression of viral 

diseases by and rising the virulence of infectious agents. These viral pathogens cause 

cardiomyopathies during the infections that lead to secondary complications. An 
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recessive) leading to thymic atrophy, and sensitivity to other pathogens (like bacteria, fungi 

and virus) based infections [50]. The homeostasis of zinc is controlled by transporters of the 

zinc like metallothioneins, that can be regulated by storage and distribution of zinc and it also 

behave as signalling molecules, which transduce various signalling cascades according to their 

external stimuli [51]. Recently, an evidence on zinc has disclosed receptor expression was 

regulated by NF-κB and receptor is specifically responsible for maintaining natural immune 
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from receptors plays a very crucial role in normal sustainence else can be linked to diseases 
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deficient zinc and this effect is prevented in zinc deficient patients by depletion of this natural 

killer cell lysis activity [54]. According to immunomodulatory effects, supplementation of zinc 

can modulate the T cells based immune reactions in peripheral blood mononuclear cells and is 

 production, total percentage of T cells 
specially helper T cells) [46]. When deficiency of 
selenium, it leads to the progression of viral diseases 
by and rising the virulence of infectious agents. 
These viral pathogens cause cardiomyopathies 
during the infections that lead to secondary 
complications. An epidemological study indicated 
that by consuming 100 - 200 μg selenium (example - 
selenomethionine) daily for two years, it lowers the 
cause of cancers in large intestine, prostate, breast 
and lungs due to immunomodulatory roles [47]. A 
vast number of epidemiological, experimental, and 
clinical studies has proved the protective role of 
selenium against malignant tumors [48]. 

Zinc
Zinc is one of the trace elements and is an 

essential component for all organisms. In immune 
system, the immune cells require sufficient amount 
of zinc for differentiation, and proliferation of 
cells [49]. The sensitivity of the cells to pathogens 
(viruses like HIV) is increased majorly due to 
lack of zinc in human body. The pathological 
or diseased conditions such as diarrhea, renal 
deficiency and gastrointestinal diseases were 
caused based on the depletion of the elements. 
Other than this, Acrodermatitis enteropathica is 
the most well-known example of zinc deficiency 
in humans. This disease is classified under 
inheritable disease (autosomal recessive) leading to 
thymic atrophy, and sensitivity to other pathogens 
(like bacteria, fungi and virus) based infections 
[50]. The homeostasis of zinc is controlled by 
transporters of the zinc like metallothioneins, that 
can be regulated by storage and distribution of zinc 
and it also behave as signalling molecules, which 
transduce various signalling cascades according to 

their external stimuli [51]. Recently, an evidence 
on zinc has disclosed receptor expression was 
regulated by NF-κB and receptor is specifically 
responsible for maintaining natural immune 
defences [52]. Reports indicated that the zinc 
transporters and its targeting and  release zinc 
from receptors plays a very crucial role in normal 
sustainence else can be linked to diseases [53]. 
The nonspecific killing of normal cells by natutal 
killer cells are generally promoted by deficient 
zinc and this effect is prevented in zinc deficient 
patients by depletion of this natural killer cell lysis 
activity [54]. According to immunomodulatory 
effects, supplementation of zinc can modulate the 
T cells based immune reactions in peripheral blood 
mononuclear cells and is mediated by production 
of cytokines (indirect effect) by immune cells. 
T cells stimulation, and suppression is based 
on concentrations of zinc, where  zinc reduce 
the levels of IL-1 and these directly stimulates 
the T cell function via involving a IL-1 receptor 
kinase 1 [55]. Immunomodulatory effect of zinc 
for potential supportive treatment strategy for 
COVID-19 is stated as a hypothetical statement that 
“Supplementation of Zinc may provide a favorable 
potential impact in treatment of COVID-19” since 
it possess an immunomodulatory effect, which is 
evidenced through several mechanisms [56].

Magnesium
Magnesium is the most important element 

that has been considered as efficient for various 
biomedical remedies due to its advanced properties 
like mechanical strength, biocompatibility, 
biodegradability, and osteogenic ability, etc 
[57]. These cations are involved in the cellular 
systems modulation or aid in proliferation for 
stimulating inflammatory or immune respone, 
because of its most important anti-inflammatory 
properties [58]. Magnesium play crucially as 
a cofactor for immunoglobulins production/
adherence of immune cells/ antibody-dependent 
cytolysis/ binding between IgM and lymphocytes/ 
macrophage response to lymphokines or as 
adherence of T and B cells in immune responses 
[57]. Magnesium supplementation stabilizes the 
nucleic acids (DNA replication and repair). In 
a study, magnesium apparently decreased the 
DNA damage and also maintained its integrity 
[59]. Lei Sun et al., in 2020 investigated on anti-
inflammatory effects of magnesium and found that 
it reduced the proliferation of leukemia cells and 
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its derived macrophages which is an essential factor 
for cell function, but it did not affect the apoptosis of 
cells. The M1 and M2 subtype markers expressions 
were down regulated or upregulated, and pro-
inflammatory or anti-inflammatory cytokines were 
secreted based on the exposure of macrophages to 
Mg2+. As per the results, magnesium can convert 
macrophages from one phenotype to other (M0-
M2) and biological effects of magnesium micron 
sized particles on inflammatory cells was likely 
because of its prompt NF-
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the DNA damage and also maintained its integrity [59]. Lei Sun et al., in 2020 investigated on 

antiinflammatory effects of magnesium and found that reduced the proliferation of leukemia 

cells and its derived macrophages which is an essential factor for cell function, but it did not 

affect the apoptosis of cells. The M1 and M2 subtype markers expressions were down regulated 

or upregulated, and pro-inflammatory or anti-inflammatory cytokines were secreted based on 

the exposure of macrophages to Mg2+. As per the results, magnesium can convert macrophages 

from one phenotype to other (M0-M2) and biological effects of magnesium micron sized 

particles on inflammatory cells was likely because of its prompt NF-B activation as well as 

reduction [60].  

3.2 Plant derived immunomodulators 

Naturally derived products, active molecules, or plants and their extracts potentially has 

immunomodulatory effect and are being studied to supplement many therapies also as vaccine 

adjuvants including chemotherapy [61]. Some of the neutraceuticals are made up of plants 

derived compounds. Due to their multiple and pleiotropic effects, these products were widely 

studied as immunomodulating agents [62]. Since ancient times, several medicinal plants and 

B activation as well as 
reduction [60]. 

Plant derived immunomodulators
Naturally derived products, active molecules, 

or plants and their extracts potentially has 
immunomodulatory effect and are being studied 
to supplement many therapies also as vaccine 
adjuvants including chemotherapy [61]. Some of 
the nutraceuticals are made up of plants derived 
compounds. Due to their multiple and pleiotropic 
effects, these products were widely studied as 
immunomodulating agents [62]. Since ancient 
times, several medicinal plants and phytochemicals 
are familiar because of their potentiality to stimulate 
the immune responses [63]. The most common 
plant derived pharmaceuticals are cochicine, 
morphine, quinine, atropine, pilocarpine, or 
theophylline, which are still required in current 
therapeutic applications [64]. Immunomodulatory 
role of components from various plant sources 
have been studied and analysed that provide a base 
in the form of prevention for clinical applications 
in various clinical practices [62].

Polyphenols
Plant derived phenolic compounds mainly 

invokes the nonspecific immune responses by 
increasing the phagocytic activity of immune 
cells especially by proliferating macrophages 
and neutrophils. These compounds exhibit 
advanced preventive and protective effects in 
cardiovascular diseases, diabetes, and cancer 
attributed to antioxidant, and anti-inflammatory 
effects [65]. Other characteristics attributed 
to phenolic compounds are antimicrobial, 
antithrombogenic, antithrombic and anti 
atherogenic, vasodilatory and cardio protective 
effects [66]. The major advantage of these 
compounds greatly lies on their antioxidant 
activity [67]. The dietary polyphenols such as 
phenolic acids, flavonoids, flavanones, stilbenes, 

and lignans are the major groups of plant 
polyphenols and their advanced and details in 
maintaining human health is studied. Flavonoids 
are composed of benzophenone structure with 
aromatic rings with hydroxyl groups connected by 
carbon bridge that gives the antioxidant property 
to these compounds [68]. Other than flavonoids, 
the secondary metabolites like phenolic acids of 
plants and even fungi can be extracted for wide 
range of applications [69]. Phenols are bioactive 
substances significantly improves the phagocytic 
activity of natural killer, through the activation 
of various mechanisms such as inflammation 
and mucosal immune activity, and also induce 
the proliferation of  splenic T cells present [70].

Epigallocatechin gallate (ECCG)
EGCG is an active form of tea catechins. 

Physiological properties of EGCG includes, 
antioxidant and immunomodulatory activities, 
which usually involve in attacking the pathogens 
[71]. It can also activate the alveolar macrophages 
and in a study, it was shown to act against L. 
pneumophila via activating of cytokines which 
was secreted effectively [72]. Pae etal., (2013) 
provided a detailed review on EGCG and its 
immunomodulatory role with details on the 
mechanism [73]. EGCG inhibit the migration of 
monocytes which persuaded by chemokines, and 
these adhered to fibronectin in monocyte cell 
lines. So, it is concluded that this is related to the 
mechanism which direct EGCG to inhibit immune 
or inflammation related antherogenesis [78]. It is 
also reported that T cells (regulatory) play a vital 
role in development of immunity in murine model 
[74]. Recent studies in primary human T cells 
have indicated the immunomodulatory effects of 
EGCG and via suppression of cytokine secretion 
[75]. Recently, EGCG was shown to be useful in 
the treatment of  atopic dermatitis in mouse model 
[76]. 3-chymotrypsin-like protease which is vital 
for the replication of viruses like coronavirus is 
shown to have high affinity for EGCG and to 
inhibit the enzyme with a concentration shown to 
be as low as  0.87 
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condensed forms of these tannins participate in 
the immunomodulatory effects [78]. In a study, 
around 67 compounds related to tannins was 
screened for its immunomodulatory role against 
Leishmania that was infected to macrophage 
cells. The study further demonstrated its role in 
activating tumor necrosis factor, nitric oxide and 
interleukins by macrophages [79]. A possible role 
of silver nanoparticles coated with tannic acid for 
combating human dermal problems as a result 
of its immunomodulation activated by  reactive 
oxygen species was suggested [80]. In an in silico  
study, binding affinity to covid-19 proteases was 
demonstrated [81]. 

Lignins
Lignins, structural components in the plant 

cell wall consists of  three basic components  
with crosslinked polymers [82]. do Nascimento 
Santos et al. , (2020) [83] studied the lignin’s 
immunomodulatory activity isolated from 
leaves of Conocarpus erectus. The lignin`s 
immunomodulatory activity on blood mononuclear 
cells as determined, and this led to elevation of the 
mitochondrial ROS levels and cytosolic Ca2+ in 
mononuclear cells. T lymphocytes and monocytes 
activation and stimulation produce nitric oxide, 
and cytokines which trigger response from T helper 
responses [83]. Lignin are generally carbohydrates 
molecules bonded to each other either by physically 
or chemically via a strong covalent linkage. Linkages 
between the complex molecules are ester or ether 
linkages, via phenylpropane subunits. Water 
soluble lignin with carbohydrate complexes are a 
class of compounds which is precipitated during 
digestion with polysaccharides and the sugars 
vary from that of bulk cellulose [84]. One example 
of lignin is lignosulfonic acid with no side effects 
even on tight junction protein expression and on 
maintaining epithelial integrity cells was reviewed 
[85]. Recently it was reported that nanoparticles 
of lignin was found to be good candidate to boost 
immune system when used as vaccine adjuvants by 
exhibiting long term immune responses [86]. 

Stilbenoids	
Stilbenoids are non-flavonoid polyphenolic 

compounds called as phytoalexins. Also are 
metabolites (secondary) produced by plants to 
combat pathogens or stress factors. Stilbenoids 
occur as both monomers and oligomers and 
their bioactivities are largely studied. Resveratrol, 

pterostilbene, piceatannol, and oxyresveratrol are 
examples of monomers has two aromatic rings 
linked by transisomer. The transisomer is most 
common and stable in nature [87]. Mattio et al., 
in 2020 [88] provided a detailed review on the 
diverse antiviral activities of these compounds and 
its occurrence naturally and the many compounds 
that is semi synthesised based on these materials. 
A possible role of the adjuvant therapy due to the 
immune modulatory effect of resveratrol along 
with zinc is suggested [89]. Its ability to modulate 
tumor niche via triggering immune responses is 
a suggested mode to use it as adjuvant along with 
other therapies [90].

Saponins
Saponins are plant derived compounds 

present in various structural forms in plants and 
these can also be used as foods. These compounds 
are diverse, and it can be chemically divisible 
into triterpenoid or steroidal glucosides. These 
compounds are available in nature as a mixture 
of other related compounds, or it can be available 
commercially commonly used as an adjuvant 
and administered parenterally with vaccines for 
parasitic diseases [91]. In a study, spleen cells 
that were enriched with saponins resulted in the 
inactivation of antigen for rabies demonstrating 
its therapeutic immunomodulatory role [92]. In a 
recent study its immunomodulatory effect against 
a seasonal flu H3N2 was demonstrated via T helper 
cell response and not via cytokine production [93]. 
Involvement of saponin containing nanoparticles 
in trigerring cellular response has led to its use as 
a vaccine component which is under clinical trials 
[94].

Alkaloids
Alkaloids is one of the most efficient materials 

among the active substances of the plants and is 
therapeutically significant [95]. Alkaloids consists 
of a class of secondary plant metabolic compounds, 
contains nitrogen atoms which is responsible 
for therapeutic applications, usually these atoms 
are combined to form a cyclic structure [96]. 
Inhibition of inflammatory cascade by isoquinoline 
alkaloids has been suggested to reduce the need of 
antimicrobial growth promoters due to its anti-
inflammatory property that can promote gut health 
[97]. It is also suggested that alkaloids can be safely 
delivered for the treatment of glaucoma with the 
help of nanoparticles [98].
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Biopolymers
Biopolymers are the type of polymers that are 

available naturally or produced by living organisms 
and these are also called as polymeric biomolecules. 
Biopolymer extraction can be from plants, trees, 
sea weeds, algae, bacteria etc. Biopolymers can 
be classified based on their source, and structural 
properties into a) polynucleotides, b) polypeptides, 
and c) polysaccharides. Polynucleotides like 
DNA and RNA consist of 13 or more nucleotide 
monomers, and these are known as long chain 
polymers. Polypeptides, composed of amino 
acids (short chain polymers) and polysaccharides 
composed of polymers and carbohydrates, which 
are bonded to form polymeric carbohydrate 
structure [99]. Some examples of biopolymers are 
cellulose, chitosan, glucan, pectin, gum arabic, 
etc. involved in multiple biomedical applications 
because of their extraordinary properties like 
biodegradability, low toxicity, biocompatibility, etc., 
[100]. They have immunomodulatory effects by 
enhancing immune response due to its controlled 
release properties [101]  as explained in the 
following sessions. Few examples of biopolymers 
for its immunomodulatory role under clinical trials 
is presented as in Table 1.

Glucan
Glucans are homopolymers made up of simple 

sugar glucose molecule. Saccharomyces cerevisiae, 
is the major source of glucan and it is also found 
in other biological sources like bacteria, fungi, and 
many other plants [101]. One class of glucans that 
stimulate the immune system are β- glucans, the 
structural residues which are linked by (β(1, 3))
glycosidic bonds attached to the glucose residues 
on the side chain by β(1, 6) linkages [102, 103]. 
Active constituents in mushrooms, oats, barley, 
yeast, bacteria, and algae are the major sources of 
β-glucans that aid in boosting immunity. It is also 
noteworthy to realise that they paly a major role in 
developing resistance  strains of microbes [104]. 
Synthesised β- glucan an analog of lentinan unit, 
showed an increased levels of chemokines and 
interleukins suggesting its role in facilitating innate 
immunity [105]. Regulatory role of these in cellular 
and humoral immune responses is demonstrated 
recently in fish model [106]. Pogue et al., recently 
[107] suggested the potential of administering 
glucan so as to increase resistance to disease by 
non specific innate mechanism of defense. It is 
emphasized that β- glucans structure play an active 

role in immunomodulatory function [108]. The 
possibility of encapsulation anti-cancer drugs in β- 
glucan nanoparticles to induce innate immunity is 
demonstrated in a study by in vitro  studies [109]. 
It is also suggested that coating nanoparticles with 
β- glucans can improve the biocompatibility of 
nanoparticles [110]. 

Gum arabica 
Gum arabica (gummy exudate) is procured 

from branches, stems of Acacia senegal  or from 
any related species.  Its main components include 
sugars, rhamnose, arabinose, and galactose along 
with a complex arabinogalactan protein which 
makes it water soluble polysaccharides. Along with 
glucuronic acid, it also contains minerals such as 
calcium, magnesium, and potassium thus being 
included in the medical applications category 
[111].  Protective role of this in patients (covid-19) 
for its immunomodulatory [112] is under clinical 
trials (NCT04381871). It is interesting to note 
that selected glycoproteins of this biomaterial 
is investigated for its excellent adjuvant role in 
mice for a probale cancer immunotherapy [113]. 
A detailed review on its drug delivery and tissue 
regenerative role is recently discussed [114].  Its 
immunomodulatory role is primarily by its action 
on dendric cells [115].

Pectin
Pectin, a complex polysaccharide is abundantly 

present on the cell walls of plants or any other 
certain variety of fruits or their peel extracts and 
these polymers are generally branched sometimes 
linear with diverse biological activities, includes 
immunomodulation activity. These are the various 
fragments of pectin are homogalacturonan, 
rhamnogalacturonan, xylogalacturonan, and 
apiogalacturonan [116].   In female mice, pectin 
and modified pectin was shown to increase 
proinflammatory cytokines -  tumor necrosis 
factor, interleukins, and interferon indicating its 
beneficial effects in immunotherapy [117]. In 
another in vivo  study, pectin extracted induced 
lymphocytes from bone marrow and spleen and 
triggered interleukin -10 [118]. Much have been 
discussed especially about the role of papaya pectin 
in immunomodulation for the prevention of dengue 
[119] and the extent of ripening can aid pectin 
interaction with toll like receptors that results in 
the reduction of inflammation [120]. Reduction of 
systemic inflammation and the radical scavenging 
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activities of pectin rich in hesperidin is considered 
as an approach to combat cytokine release in 
covid-19 patients [121, 122].

Chitosan
Chitin, one of the most abundant polymers 

(naturally available biopolymer) available on 
the earth and is deacetylated to form chitosan. 
its uses in medical applications is mainly based 
on their structural characteristics, presence of 
cationic groups like amine,  and it has better 
physicochemical properties [123]. Chitosan is 
considered as biodegradable biopolymer along with 

its properties like biocompatibility, bioadhesivity, 
bioactivity and low solubility. Due of its properties 
it shows a vast range of applications it is one of the 
main biopolymer extensively researched [124].   
Proinflammatory, and antiinflammatory growth 
factors, cytokines, and chemokines, are induced 
thus branding it in  immunostimulatory activity 
[125]. In a study, herpes simplex virus mice treated 
with chitosan, proved its immunomodulatory 
and stimulatory role [126]. In a recent review, 
a triple approach to combat covid-19 by chitin 
and its derivative chitosan is suggested [127]. It 
is also suggested that the induction of cell based 

 

Table 1. Few examples of bipolymer immunomodulators under clinical trials
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immunity by chitosan is via stimulating T helper 
cells [128]. Chitosan nanoparticles is also shown 
to have boosted immune response and is shown 
to develop resistance against diseases [129] and is 
also suggested for its role as immunomodulatory 
response vaccine for cancer therapy [130].

NANOCARRIER SYSTEMS
Nanocarriers (N.C.s) are colloidal compounds 

that act as drug carrier system due to their submicron 
particle size typically <500 nm. N.C.s are extensively 
studied for its use in drug delivery to improve 
efficacy of drug [134]. N.C.s has the potential ability 
to alter the basic properties and bioactivity of the 
drugs and  have emerged as advantageous vehicles 
to interact with cells and organs of immune system 
[135], hence finds applications  as a carrier system 
for immunomodulatory agents. These N.M.s has 
ability to target specific immune cells, and is being 
considered for cancer immunotherapy. For this 
immunomodulatory role, many different N.M.s 
with a unique physical, biological, and chemical 
trait that can be constructed/engineered/tailored 
according to the target needs for stimulating 
the immune system [136]. The micro and N.C.s 
provide great opportunities in modifying the 
immune system during transplant, autoimmune 
condition, infectious disease, and cancer condition, 
etc. N.M.s synthesised via bioroute have also 
achieved familiarity due to their biocompatibility, 

cytocompatiblity, nature friendly, superior 
bioactivity than in some instances chemically  
synthesized N.M.s that donot follow sustainable 
route of synthesis [137]. It is to be realised that 
nanocarriers has capability to modulate the 
immune response to generate a tolerogenic 
effect, based on their entirely conjugated signals 
[138]. Few nanocarrier classes (Fig. 1) and its 
immunomodulatory role is provided in this section.

Metal or metal oxide based nanocarriers
Metal nanoparticles are a type of nanoparticles 

derived from metals (Au, Ag, iron oxide, Cu, etc.) 
is used for biological and medical applications. 
The properties of nanomaterials such as a) size, b) 
charge, c) hydrophobicity, d) hydrophilicity, and 
e) the steric effects of nanoparticles aid them to 
interact with the immune system [139, 140]. Some 
examples of metal/metal oxide-based nanoparticles 
include nano silver, nano gold, and nano-metallic 
oxides. It should also be noted that the most 
widely manufactured nanomaterials of titanium 
dioxide is shown to induce immunotoxicity 
by invoking inflammation [141]. In an yet 
another interesting study, gold nanoparticles 
synthesised using a grass extract aided in the 
retainment of many active principles of the extract 
immobilised on nanoparticles and aiding in 
suppressing cytokines a proinflammatory agent 
from macrophages and natural killer cells [142]. 

Fig. 1. Nanocarrier classes with immunomodulatory role.
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Lipopolysaccharide a well known inflammatory 
causative agent was suppressed in vivo by gold 
nanoparticles carefully engineered with surface 
that is hydrophobic as well as zwitterionic 
demonstrated immunomodulatory effects [143]. 
Size based role of gold nanoparticles as antigen 
carriers as well as adjuvants was demonstrated in 
a study [144]. Another set of nanoparticles with 
excellent optical and antimicrobial properties is 
silver nanoparticles. In a study conducted in mice, 
cytokine release in cancer induced mice was found 
to be suppressed by silver nanoparticles [145]. 
In a recent study, silver nanoparticles is shown 
to decrease deleterious effect of coronavirus by 
reducing cytokine release, inhibition of viral entry 
and by its immunomodulation of host virus leading 
to its apoptosis [146]. In another study, copper and 
silver nanoparticles were found to impart toxicity 
to tumor cell lines, through its immunomodulatory 
role though its mechanism unclear [147]. Recent 
findings suggests that these metal nanoparticles 
are effective against coronavirus due to its anti-
inflammatory and immunomodulatory role [148]. 
It is noted in the case of iron oxide nanoparticles 
immune stimulation as well as immunosuppression 
was observed, this is due to the size effect as well 
as the method of engineering nanoparticles with 
functionalities. It was also found to accumulate in 
stem cells or tumor specific cells thus providing 
an immunomodulatory effect in enhancing tumor 
eradication [149]. In a novel approach, hollow 
shaped iron oxide nanoparticles for nitric oxide 
release were prepared and was found to reprogram 
tumor associated macrophages [150]. In a recent 
study very small iron oxide nanoparticles was found 
to trigger apoptosis of undifferentiated hemopoietic 
stem cells and inflammation was mainly caused by 
macrophages of spleen suggesting size effect in 
immunomodulation [151].

Carbon based nanocarriers
Carbon nanotubes are considered as 

biomaterials, and this attracted ample attention 
due to their excellent properties. Low solubility, 
dispersion, toxicity of carbon nanotubes is an 
hindrance in its biological applications [152].  
Accordingly functionalization of these can 
improve biocompatibility as well as modulate the 
immune cellular functions, either as a stimulating 
or suppressive response [33]. The antioxidant 
properties of carbon-based nanomaterials, is better 
than the dietary antioxidants and find applications 

in inflammatory diseases [153]. The role of carbon 
nanotubes in stimulating cell specific stimulation 
of immune system finds place in future to be used 
as immunotherapeutic agents [154]. Fadel et al ., 
[155] investigated in mice that the carbon nanotube 
along with a polymer as a composite has the ability 
to mimic as an  antigen presenting cell (artificial) 
and aid in proliferation of T cells indicating its 
clinical applications. In another study, it was found 
that carbon nanotubes when functionalised did not 
affect lymphocytes but triggered proinflammatory 
cytokines [156]. 

Ceramic based nanocarriers
Ceramic nanoparticles also contain inorganic 

nanoparticles, besides metals, metal oxides, and 
metal sulphide N.P.s, and these are synthesized 
at different size, shape, with different pore size 
[157]. Basically, ceramic N.P.s can be classified 
into inert, resorbable ceramic N.P.s [158]. They can 
modulate immune system either defensive way or 
via stimulating inflammatory response, dose play 
a major player in immunomodulation and time 
of exposure also plays a major role [159] [160]. 
Immunomodulatory role of bioceramics aids in 
bone regeneration which is also considered as an 
alternative for bone grafts [161].

Liposome based nanocarriers
Liposomes are spheroidal vesicles formed from 

bilayer membranes of lipids and has ability to 
entrap and encapsulate both hydrophobic as well 
as hydrophilic agents protecting the molecule from 
enzymatic degradation. Advantageous of liposomes 
for drug delivery systems includes – a) stealthness, 
b) biocompatibility, c) high drug loading efficiency, 
d) increased stability in biological systems, and e) 
controlled release kinetics properties, and many 
drugs are based on these is available in the market 
[162]. Once such example is liposomal formulation 
of amptothericin [163]. Liposomes can be made as 
cationic liposomes, anionic liposomes or neutral 
liposomes depending upon the type of phospholipid 
involved [164, 165]. Although pharmacological 
profiles of drugs lodaded in liposomes have 
therapeutic profiles, it is unfortunate that the drugs 
actually reach mononuclear phagocytic system 
[166]. Detailed review by Zahednezhad et al., 
provides insight on various aspects of its interaction 
with the immune system is discussed [167]. 
Although there are several concerns, liposomes are 
considered as a predominant choice of biomaterial 



206

S.P. Naseem Banu and S. Narayan / Biomaterial Based Nanocarriers for Delivering Immunomodulatory Agents

Nanomed Res J 6(3): 195-217, Summer 2021

related to immunotherapeutic nanosystems in 
cancer due to its negligible toxicity [213]. 

Polymer based nanocarriers
Polymeric nanoparticles are synthesized 

artificially through various biological sources. 
These nanosized spherical particles size are 
scaled as 10 to 500 nm. It can either be synthetic, 
natural or a composite material (natural and 
synthetic materials), the major characteristics 
of the polymeric N.P.s are biodegradability, 
solubility, biocompatibility, but the copolymers 
encompass low water solubility. These advantages 
impart them as a potential candidate for carrying 
therapeutic agents as a carrier for drug delivery 
(targeted). Drug loading capacity, encapsulation 
efficiency and releasing ratio can be tuned 
by modifying the polymeric carriers [168]. 
Polymers can be classified into a) synthetic, 
and b) biodegradable nanoparticles. Example 
of synthetic polymers or artificially synthesized 
polymers are polyesters, and polyaminoacids are 
natural proteins or polysaccharides. Some of the 
examples of biodegradable or biocompatible 
polymers are PLGA, chitosan and other plant 
derived polysaccharides (pectin, glucan, cellulose, 
gum exudates). These polysaccharides have been 
extensively studied,  its properties identified 
and structural characteristics decoded and is 
recommended immunotherapy [169]. Polymeric 
nanoparticles also has ability to produce or 
modulate immunocellular responses and exhibit 
high potential in cancer and other infectious 
diseases as immunotherapy [170]. 

Synthetic Polymer Nanocarriers
These can be synthesized chemically, and novel 

properties is attributed to chemical composition 
that is engineered. They are tuned for sustained 
release of drugs/agents at the target cells, tissues, or 
organs by their stimuli responsiveness properties 
[171]. These novel properties of polymeric 
nanoparticles determine their functions based on 
their structural and functional characteristics (like 
degree of polymerization, and groups present) 
and majorly the size and shape of the poymer 
depends on the methods of synthesis [172]. Their 
involvement in modulating immune system as a 
vaccine or vaccine adjuvants or as development of 
immunotherapeutic moiety for diseases has been 
investigated widely. 

PLGA (Poly D, L-lactic co-glycolic acid) Nanocarriers
PLGA nanoparticles are safe, stable, and 

biodegradable drug carriers. PLGA nanoparticles 
as a polymeric drug delivery systems helps to 
decrease transplant rejection by controlling 
systemic effects [173], and therefore is an important 
carrier approved by FDA [174]. Honey loaded 
cationic PLGA polymeric nanoparticles known 
for its immuno-adjuvant activity by T helper cells 
immune response, also stimulated interferons, 
interleulins and TNF
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by activating macrophages [175]. Adjuvant activity of thees polymers with 

antigens/polysachharide  entrapped for H9N2 vaccines in chicken resulted in humoral as well 

as cellular immune responses [176]. Curcumin loaded PLGA nanoparticles modulated cell-

mediated immune response at varying concentrations of 5 or 10 mg/kg and these 

nanoparticulate system significantly enhanced humoral immune response  [177]. Recently 

Maleki et al., [178] have reported the possibility of co loading paclitaxel and etoposide on 

mPEG-PLGA nanoparticles. The co-loading of two drugs enables to overcome 

pharmacokinetic and physiological limitations of individually loaded drugs and enhancement 

of therapeutic efficacy in the treatment of intracranial glioblastoma. It is also today possible to 

prepare electrospun fibers and optimize their preparation using artificial neural networks model 

[179]. Many studies suggest PLGA based nanoparticles for use as drug delivery/carrier system 

for delivering antigens with good stability.  

4.5.1.2 Poly lactic acid nanocarriers 

Polylactic acid based nanoparticles (PLA-NPs) has a great potential in maintaining 

therapeutic levels of drugs used in nanomedicines by sustained release of drug molecules at 

different time intervals [180]. In a study conducted in rats, tetanus vaccine antigen was 

encapsulated in these nanoparticles coated with polyethyene glycol as a nasal vaccine delivery 

vehichles that exhibited prolonged immune response with high load of antibodies [181]. 

Anionic nanoparticles of PLA were prepared containing DNA or protein antigen and was tested 

against animal models against HIV protein. High levels of interferon gamma produced in 

animals indicate thr reole of surface charge in vaccine devoloment using nanoparticles [182]. . 

In an interesting study, inhalable PLA along with PLGA nanoparticles were prepared with the 

surface of nanoparticles carrying hepatitis B surface antigen that indicated a continuous release 

of this antigen for nearly 42 days which makes it a potential candidate for vaccine development 

[183].  

4.5.1.3 Polystyrene nanocarriers 

 by activating macrophages 
[175]. Adjuvant activity of these polymers with 
antigens/polysachharide  entrapped for H9N2 
vaccines in chicken resulted in humoral as well as 
cellular immune responses [176]. Curcumin loaded 
PLGA nanoparticles modulated cell-mediated 
immune response at varying concentrations of 
5  or 10 mg/kg and these nanoparticulate system 
significantly enhanced humoral immune response  
[177]. Recently Maleki et al., [178] have reported 
the possibility of co loading paclitaxel and etoposide 
on mPEG-PLGA nanoparticles. The co-loading of 
two drugs enables to overcome pharmacokinetic 
and physiological limitations of individually loaded 
drugs and enhancement of therapeutic efficacy in 
the treatment of intracranial glioblastoma. It is also 
today possible to prepare electrospun fibers and 
optimize their preparation using artificial neural 
networks model [179]. Many studies suggest PLGA 
based nanoparticles for use as drug delivery/carrier 
system for delivering antigens with good stability. 

Poly lactic acid nanocarriers
Polylactic acid based nanoparticles (PLA-NPs) 

has a great potential in maintaining therapeutic 
levels of drugs used in nanomedicines by sustained 
release of drug molecules at different time intervals 
[180]. In a study conducted in rats, tetanus vaccine 
antigen was encapsulated in these nanoparticles 
coated with polyethyene glycol as a nasal vaccine 
delivery vehichles that exhibited prolonged 
immune response with high load of antibodies 
[181]. Anionic nanoparticles of PLA were prepared 
containing DNA or protein antigen and was tested 
against animal models against HIV protein. High 
levels of interferon gamma produced in animals 
indicate the role of surface charge in vaccine 
development using nanoparticles [182]. In an 
interesting study, inhalable PLA along with PLGA 
nanoparticles were prepared with the surface of 
nanoparticles carrying hepatitis B surface antigen 
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that indicated a continuous release of this antigen 
for nearly 42 days which makes it a potential 
candidate for vaccine development [183]. 

Polystyrene nanocarriers
Polystyrene is an aromatic polymer which 

can be prepared by polymerization of monomers 
of styrene. It is one of the most enormously used 
types of plastic. It is used in medical devices such 
as laboratory equipments due to its inertness, 
biocompatibility, and hydrophobicity, for biological 
applications it can easily undergo oxidation and 
provide a surface for the cells to grow [184]. These 
nanoparticles were found to target immune system 
in marine organisms [185]. An ex vivo research 
revealed a surge in cytokine release, suggesting its 
immunomodulatory role with a significant damage 
to DNA in human blood [186]
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4.5.1.3 Polystyrene nanocarriers 

-amino ester), a novel class of synthetic 
polymers, are cationic polymers has pH-dependent 
solubility and hydrophobic polymer  [187]. Wang 
et al., designed pH responsive co-polymers of these 
nanoparticles  along with interleukin -2 as a cargo 
and found that they could specifically release the 
payload in the tumor microenvironment [188]. 
In another study, it was found that curcumin 
encapsulated in these nanocarriers did not register 
any burst release of curcumin and the release of it 
was consistent for 48 hours [189].

Polysaccharide nanocarriers
Biopolymeric nanoparticles possess multiple 

application in nanobased delivery (drug) systems 
and can be administred as drugs or vaccines. 
The presence of biologically active materials as 
nanoparticles enhances its activity by specific 
targeting and delivery at targeted sites. Although 
they are reported to be less immunogenic [190], 
when it comes to therapeutic applications they can 
increase immune response by the controlled release 
of cargo  is involved in modulating the immune 
system [191].  Zwitterionic polysaccharides can 
also interact with T cells to produce interleukin 
2. Detailed discussion on the polysaccharides 
from microbes and plant is presented recently 
by Sindhu etal., [192]. Polysaccarides based 
nanomedicine can also efficiently carry and 
deliver adjuvants, cytokines, nucleic acids, and as 
well as intrinsically modify immune system and 
can be used in cancer immunotherapy [193]. It 

should also be noted that polysaccharides can be 
capped on the nanoparticles like silver can exhibit 
immunomodulatory properties against resistant 
strains of bacteria which helps in healing process of 
wound [194]. Polysaccharide mediated engineering 
of nanovaccine is the most researched topic for a 
better design vaccines with adjuvats [195].

Protein nanocarriers
Amphiphilic nature of protein nanocarriers 

makes it one of the attractive candidates as 
nanocarriers as it can associate with drug as well 
as solvent [196]. Bio-nano interface of protein 
along with components of immune system is a well 
researched topic [197]. Polymers like polyethylene 
glycol has gained attention because of its stealth 
effects is largely attributed to adsorption of protein 
on surface of these nanoparticles [198]. Leukocyte 
associated immunoglobulin like receptor an 
immune receptor interacts with collagen  and 
understanding this binding is suggested in 
the design of collagen based biomaterials 
for immunomodulation [199]. Recently, cell 
membrane based nanoparticles that are classified 
as biomimetic materials is gaining significant 
attention for use as nanocarriers due to its rich 
composition of biomacromolecules especially 
protein which efficiently acts as a communicator 
for the bio-nanointerface interaction which can 
positively contribute to immune based therapy 
[199]. Few examples are presented as in Table 2.

ROLE OF NANOCARRIERS IN IMMUNOM-
ODULATION

The interaction of nanosystems with immune 
system results in altering activity of the immune 
cells of immune system either by activating or 
supressing the activity of the cells. The N.P.s have 
large surface area and strong oxidative property 
than normal or bulk particles, which can interact 
with cells which are majorly responsible for 
modulation or suppression in immune cells [200]. 
Nanoparticles that can trigger inflammatory 
responses via release of cytokine or chemokine 
or even oxidative stress is tapped for killing 
tumor cells [201, 202]. Components involved in 
immunomodulaton by nanoparticles [203-205] is 
presented (Fig.2).

FACTORS AFFECTING IMMUNOMODULA-
TION OF NANOPARTICLES

Immunomodulation by nanoparticles 
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Table. 2. Immunomodulatory effects of protein nanocarriers – Few examples

Fig. 2. Components of immune system and immunomodulatory role of nanoparticles
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depends on fabrication/synthesis/preparation of 
nanoparticles methods that involves modification 
to improve the targeting of vaccine for example, 
nanoparticles to the dendritic cells.  The nature 
of nanoparticles such as chemical signature, 
its size, water solubility, chemistry, shape, and 
protein-binding ability everything plays a role in 
eliciting immune response [212]. Few important 
characteristics of nanoparticles and their effect on 
immune response is discussed here.

Effect of size/shape, composition, and surface 
chemistry of nanocarriers on immune response

Nanoparticles primarily interact with antigen 
presenting cells dentritic cells which is mainly due 
to the physiochemical properties of nanoparticles 
[213]. For lymph node targeting around 20 – 40 
nm sized particles were found to be ideal [214] 
and nanoparticles of similar size was found to be 
accumulated in dentritic cells [213]. Baranov et al., 
recently reviewed the role of surface properties, 
shape and size of nanoparticles in the uptake of 
pathogen, similarly nanoparticles too have a role in 
the T cell activation [215]. In a study, three different 
sized very small gold nanoparticles 5 nm, 15 nm 
and 30 nm were monitored in cell lines for uptake 
and it was found that 5 nm sized nanoparticles 
downregulated toll like receptor expression 
suggesting its role as adjuvants in cancer therapy 
[216]. In an interesting recent review the role of 
size, shape, sequence, stochiometry, and surface 
properties linked to immunostimulation was 
thoroughly discussed [217]. Flexible nanoparticles 
by way of using biomimetic nanoparticles can 
trigger specific immune responses which might 
pave way to alternative immunotherapies [218]. 

Route of exposure
Gold nanoparticles designed with aptamers 

that were specific to the dendritic cells  registered 
an improved response in mice via T helper as well 
as T regulatory cells that was delivered under the 
tongue (sublingual) [219]. For instance, in the 
case of zein nanoparticles for a study conducted in 
mice, parenteral or subcutaneous or intramascular 
route showed different types of immune response 
and it was found that parenteral administration 
resulted in a long-term immune response and 
it was suggested that either functionalisation or 
reduction in the dose is required to eradicate 
undesired immunogenicity [220]. Chenthamara 
et al., provided a detailed review on the type of 

nanoparticles and the challenges associated with 
each nanoparticle with respect to the route of 
administration of them for drug delivery and 
care need to be taken in drug design based on the 
route of administration [221]. In a study, PLGA 
nanoparticles was encapsulated with an antigen 
and threitolceramide indicated that intravenous 
administration of nanoparticles was needed for 
invoking a proper anti tumor immune reaction 
[222]. Many nasal covid – 19 vaccines are under 
trials and results registered activation of mucosal 
response including inhibition of viral replication 
[223]. Hence, all the parameters and properties 
of nanoparticles need to be considered to take 
nanoparticles forward to clinical trials.

FDA approval of biomaterial immunomodulators
Emphasis is given for those biomaterials that 

are biodegradable and FDA approved [224]. 
Biomaterials are approved by FDA for specific 
properties like the case of PLGA for sustained release 
properties [225]. An FDA approved biomaterial 
as dental fillers, hyaluronic acid was second most 
popular choice of material among women as a 
cosmetic injection  [226]. An interesting feature of 
a biomaterial like chitosan getting a nod as wound 
dressers is due to its biocompatible property [227]. 
Scaffolds based on collagen as biomaterial got 
approval from FDA as it can integrate well with 
native tissues for regenerative purpose. Research 
in this field is very vast such that the kind of 
architecture of collagen whether as hydrogels or as 
sheet is also looked at [228].  An extensive study on 
recent trends in biomedical use of biomaterials is 
presented in a recent review and the knowledge gap 
from the review is understanding the functionality 
of biomaterials  can help in vascularization of new 
construct [229].

CONCLUSION
The manuscript describes the role of 

immunomodulators and how nanocarriers 
effectively enhance the activity of natural and 
synthetic immunomodulators. The significant 
advantages of each class of immunomodulators 
and the enhancement of activity through a range of 
nanocarriers is discussed. Way forward for clinical 
application of nanocarriers is to optimize the route 
of exposure and seeking necessary regulatory 
clearances through better understanding of 
characteristics of nanocarriers on immune 
response.
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