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Objective(s): To address cellular response to nanosized particles, we designed 
in vitro cytotoxic effects of titanium dioxide nanoparticle was assessed on 
hepatocarcinoma cell line (HepG2) with novel UVA exposure. 
Methods: Cellular morphology, cell viability, and membrane leakage of lactate 
dehydrogenase were used to evaluate the acute cytotoxic effect of TiO2 after 24 
hours of exposure. 
To determine the chronic exposure effects, Hepatocarcinoma cell lines were 
treated with 125 and 250ppm of TiO2 in 4 consecutive passages lasting 25days. 
Results: Obvious changes in cellular morphology like cell shrinkage and rounded 
appearance and cytoplasm granulation was observed at 2500ppm and higher 
concentration.Cell count decreased during four passages, while cellular oxidative 
responses such as nitric oxide production, and membrane lipid peroxidation, and 
total cell protein showed significant increases compared with controls.
Conclusions: These results suggest that chronic exposure even to the safe 
doses of nanosized particles can stimulate cellular oxidative and inflammatory 
responses.
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INTRODUCTION
Nanoparticles introduce novel analytical tools 

with various biological functional characteristics 
to life science [1-3]. Nanosized Titanium dioxide 
(TiO2), an odorless, noncombustible nanoparticle 
exists in different crystal types such as Anatase, 
Rutile, Brookits and amorphous with different 
physical and chemical properties[4-6].Titanium 
dioxide is used in the skeleton of various 
productions such as papers, plastic, paint, food 
colorant, cosmetics, sunscreens and recently widely 
in cancer treatment and drug delivery system [7,8]. 

For this widespread usage and possible acute 
and chronic exposure to titanium dioxide, there is a 
severe concern of human health and environmental 

implications of manufactured nanoparticles [9,10]. 
Some relevant studies evaluated the cellular 

cytotoxic effect of titanium dioxide nanoparticles 
with respect to different concentrations showed 
a remarkable toxic effect such as oxidative DNA 
damage, micromoles formation and increased 
hydrogen peroxide production in human bronchial 
cells depended on Anatase crystal form, higher 
doses and smaller size [11].

Some other studies had demonstrated that 
the cytotoxicity of TiO2 nanoparticles was as 
considerable as the other nanoparticles like 
nanosilver and nano silicons , and Ag nanomaterials 
[12-13]. 

Also, few studies indicated that TiO2 
nanoparticle could produce H2O2 and hydrogen 
peroxide under Ultraviolet-A radiation (UVA) 

http://creativecommons.org/licenses/by/4.0/.
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and increase cytotoxic effects of TiO2versus 
some studies which had reported TiO2 chronic 
inflammatory response in pulmonary system of rat 
without UVA activations [14].

To clarify in vitro cytotoxic effects of TiO2 after 
acute and chronic exposure, we designed a study 
in which Human Hepatocarcinoma cell line was 
exposed with various concentrations of titanium 
dioxide and then cellular toxicity was accessed.  

METHODS
Chemicals

Ultrafine titanium dioxide (99% purity), was 
purchased from PlasmaChem CmbH company 
(www.plasmachem.com). The particles were 
suspended and ultrasonicated  in culture medium 
to reach the final concentration of 200 μ g/m. TiO2 
nanoparticle were analyzed for the  size and shape 
using Zetasizer NanoZS, UK. It was homogenous, 
turbid solution with no precipitation, 50000ppm, 
Anatase crystal dominant and 4-8 nm in diameter 
[15].

Cell culture and extract
Human Hepatocarcinoma cell lines were 

obtained from the Pasteur institute (Tehran-Iran) 
in the exponential phase. They were cultured in 
RPMI cell medium supplemented with 5%-10% 
fetal bovine serum incubated in 5% CO2 and at 370 
C. Sample cell were passaged 10-20 times during 
the study and in every passage; in 80% confluency,  
they were detached by  using trypsinization 
enzyme.

After exposure, the cell samples were suspended 
in 500 µl chilled homogenizing buffer (250 mM 
sucrose, 12mM Tris-HCl, 0.1% Triton X-100, pH 
7.4, and 5mM PMSF) and lysed.  The solution was 
centrifuged at 8000 ×g for 10 min at 4ºC. many 
biochemical assays were performed in cell extract 
medium.  

In vitro cytotoxicity assay:
Tetrazolium salt (Sodium 3, 3′-(1((phenylamino) 

carbonyl)-3, 4-tetrazolium) XTT are quantification 
of viable cells. Cells were cultured in 96-wells plates 
(106 cell/200µl medium). After 24 hours of TiO2 
treatment, a mixture contains 5ml of Sodium 3, 
cells cultured in 96-wells plates were mixed by 
3′-XTT labelling and Electron coupling reagent 
and after 4 hours incubation in room condition, 
the absorbance was read in 495nm with ELISA 
plate-reader. Half maximal (50%) inhibitory 

concentration (IC) of was calculated as IC50. 

Biochemical assays
LDH enzyme activity was evaluated in the 

cell culture media after 24 hours -TiO2 treatment 
according to Gayman’s LDH cytotoxicity assay [16].

After four consecutive passages; protein 
concentration of the cell extracts was estimated 
by Bradford method, Nitric oxide concentration 
in cell media was measured according to their 
instruction in NO assay kits(Chimazzim company) 
[17].Melanodialdehyde (MDA), end-product and 
an index of lipid peroxidation  was assessed in cell 
extracts as explained by Ohawa [18].

Cell morphology
Human Hepatocarcinoma cell lines were 

treated with TiO2 by different concentration for 24 
hours and then were washed with PBS for cleaning 
attached TiO2 particles (TiO2 made cell medium 
turbid and not suitable for evaluating morphology).
Cells were visualized with Light microscope (×10, 
×40, and ×100 magnification). 

TiO2 treatment protocol
Acute exposure

IC50 assessed acute cytotoxicity of nanoparticle 
(is defined as the concentration, which reduces 
the viability of uninfected cell by 50%), monolayer 
cell line became confluent in a 96-wells plate 
with a density of 10000. HepG2 cells were c with 
different concentration of TiO2 (0-17000ppm) as 
shown in figure (6) for 24 hours. After 24 hours 
incubation, cell medium was removed and toxicity 
endpoints such as cell viability (XTT assay), Lactate 
dehydrogenase enzyme leakages (LDH assay) were 
accessed. IC 50 was calculated according to results 
of XTT assay and clarified as a dose measured cell 
count decreased approximately 50% compared 
with control sample based on Optic density. 

We evaluated ultraviolet-A (UVA) (320-400nm) 
radiation effect on TiO2 cytotoxicity by designing 
three groups as follows [19]: 

1) Cell lines were treated with TiO2 without 
UVA radiation

2) TiO2 was radiated by UVA for 40 minutes 
and then added to cell samples.

3) Cell lines were treated with TiO2 nanoparticle 
and all contents received 5 minutes UVA radiation.

Chronic exposure
To estimation the oxidative stress response to 

http://www.plasmachem.com
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chronic exposure, HepG2 cell lines were cultured 
in 6 flasks in 106 counts, two samples as control, 
two of them exposed to 5% and 2 of them were 
treated with 10% of titanium dioxide toxic dose 
(2500ppm). To make a more homogenous medium, 
we mixed titanium dioxide with 5ml of cell media in 
the sterile condition and added it to remains. When 
the control groups reached 80% confluency, the cell 
cultures in all the flasks were renewed again. This 
process followed in four consecutive passages. The 
cell medium was collected, centrifuged at 1000 rpm 
5 minutes for TiO2 separation and then frozen. 
Also, cell samples after washing with PBS were 
trypsinized centrifuged at 1000 rpm and frozen in 
-70 C.  This test repeated two times.

After completing these processes, we conducted 
oxidative stress tests such as lipid peroxidation, and 
total cell protein content in cell extracts and Nitric 
oxide production in cell mediums.

 Statistical analysis:
We used software SPSS version 16 for analysis 

of data. The experiment was carried out twice in 
duplicate. Our results were expressed by means 

± S.D and three groups’ results were accessed by 
One-way ANOVA and also Univariate analysis 
of variance. P<0.05 was considered statistically 
significant.  

RESULTS
Cell morphology

HepG2 cell line had no apparent changes 
in the presence of TiO2 up to a concentration 
of 1500-2500 pmm. However, obvious changes 
in cellular morphology like cell shrinkage and 
rounded appearance and cytoplasm granulation 
were observed at higher level which might suggest 
the cytotoxic effect of TiO2, although macroscopic 
evaluation of cell morphology got more difficult, 
for cell media turbidity made by TiO2 precipitation. 
Also no noticeable difference was detected between 
groups received UV-A radiation and not (figure 
1-2).

Acute cytotoxicity of TiO2
As illustrated in figure 3, according to the results 

of cell viability assay (XTT) after 24 h treatment, a 
considerable decrease in the viability of HepG2 was Figure 1

Figure 2-A figure 2-B figure 2-C

Figure 2-D Figure 2-E

Fig. 1. Morphological characterization of Hepatocarcinoma cells in the second group in which TiO2 after40 minutes UV-A radiation 
was added to cell Culture (Magnification 100×). At lower doses up to 1000ppm. No cellular morphology changes were observed but 
at higher dose, cell shrinkage, cytoplasm granulation and rounded appearance were seen. Control cell (A); Cells were treated with 
250ppm (B); Cells treated with 2500ppm (C); at higher dose than 4500ppm, titanium dioxide produced turbidity confounded cell 

appearance. Cell lines were exposed to 8500ppm (D), cell exposed to high TiO2 concentration 10000ppm (E).
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seen in exposure to a different, accumulative dose of 
titanium dioxide. This decrease wasn’t remarkable 
in the 500ppm and 1000ppm TiO2 concentration 
but, at the higher doses, it was showed a dose-
dependent cytotoxicity .Approximately half-
maximal (50%) inhibitory concentration (IC) 
of a TiO2 was observed in 2500ppm which was 
statistically significant compared with control 
(p<0.05). So it was accounted as IC50 value on 
HepG2 cells. Optic density was affected by cell 
medium turbidity at the higher concentration and 
assessment was impossible. 

We designed three groups for evaluation of 
UV-A radiation on TiO2 cytotoxicity as described 
in part 6. Our results showed a significant 
difference in cell viability in group 3 in which 
cell lines after TiO2 treatment received UV-A 
radiation. But in the other 2 groups, cell counts 
didn’t have any significant difference with each 
other (figure 3).

Chronic cytotoxicity of TiO2
After four consecutive passages 

(approximatly25days), cell count decreased from 
9×105 to 6.8×105 in the control group versus 
exposed samples (125ppm and 250ppm) which 
reached to 5 and 4 ×105 respectively.  

 NO production changes are illustrated in 
(figure 4).After four consecutive passages, NO 
production as an inflammatory indicator increased 
in the HepG2 cell medium in both 125 and 250ppm 
TiO2-exposed samples compared with control after 
second passage (p<0.05). The nitric oxide content 
increased from 0.4 µM to 0.354 µM in the 125ppm 
group. This increase was significantly dominant 
from 0.9 µM to 0.925 µM in exposed 250ppm 
group rather than 125ppm (p<0.05). 

Considerable increase in total cell protein 
content versus decrease in the cell count of both 125 
and 250ppm groups were recorded in comparison 
with control groups after the second passage (figure 

Figure 2
Figure 3-A Figure 3-B Figure 3-C

Figure 3-EFigure 3-D

Fig. 2. Morphological characterization of Hepatocarcinoma cells in the third group in which UV-A was radiated 5 minutes to cell lines 
treated with TiO2 (Magnification 100×). From lower doses up to 1000ppm. No cellular morphology changes were observed but at 
higher dose, cell shrinkage, cytoplasm granulation and rounded appearance were seen and no significant different in morphology was 
detected with second group. Control cell (A); Cells were treated with 250ppm (B); Cells treated with 2500ppm (C); at higher dose than 
4500ppm, titanium dioxide produced turbidity confounded cell appearance. Cell lines were exposed to 8500ppm (D), cell exposed to 

high TiO2 concentration 10000ppm (E).
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5). In the first exposure, cell protein content was 
calculated 0.316 mg/ml and 0.361mg/ml in 125ppm 
in 250ppm group respectively without significant 
difference compared with control group (0.281 mg/
ml) but, it rose to 0.687 mg/ml and 0.85 mg/ml after 
second passages (13 days) compared with control 
content of 0.432 mg/ml (p<0.05)and confirmed that 

cell protein content was more statistically dominant 
in the 250ppm rather than 125ppm (p<0.05).

 Our results represented that membrane lipid 
peroxidation products as the other indicator of 
oxidative cell stress was significant increase in 
the TiO2-exposed cells and also this difference 
was more evident in 250ppm TiO2 exposed cells 
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Fig. 3. titanium nanoparticle effect on cell viability of hepatocarcinoma cells.
HepG2 cells were treated with different concentrations of nanoparticle after 24 h incubation period, and cell viability was determined 
by the XTT reduction assay as described. The average OD value of control cells was taken as viability index and compared with OD 
in nanoparticle- exposed cells. The data are expressed as mean of two independent experiments (*) indicates a statistically significant 

difference compared to controls (p < 0.05).
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every following passage in the exposed samples compared with control one. Sample exposed to 250ppm of TiO2 produced more NO 
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(p<0.05)(figure 6) and also, our results showed that 
chronic exposure to TiO2 during four passages 
induced peroxidation products. 

DISCUSSION
In the present study, we tried to investigate the 

cytotoxic effects of TiO2 nanoparticle in a precise 
focus on crystal type, size, dose-dependency and 

UV-A radiation. 
Although the increased use of nanobiomaterials, 

such as TiO2nanoparticles (TiO2 NPs), our 
results demonstrated that Anatase -crystal TiO2 
(4-8 nm) has toxic effects on human cells. After 
24h-exposure to titanium dioxide nanoparticle, 
IC50 was accounted for approximately2500ppm 
and UV-A radiation to complex TiO2-exposed 
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Fig. 5. Protein content after 4 consecutive passages exposed to subtoxic dose of titanium dioxide. Increase in protein content versus 
decrease in cell count after every following passage in the exposed samples compared with control one. Sample exposed to 250ppm of 

TiO2 produced more protein compared with 125ppm exposed.
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Fig. 6. lipid peroxidation products after 4 consecutive passages exposed to subtoxic dose of titanium dioxide. Increase in lipid peroxi-
dation products after every following passage in the exposed samples compared with control one. Sample exposed to 250ppm of TiO2 

produced more lipid peroxidation compared with 125ppm exposed.
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cells demonstrated more cell toxicity compared 
with other conditions. 

Cytotoxic effect of titanium dioxide was 
discussed in different concentration, crystal type 
and sizes in various other researches.

In vitro cytotoxicity assessment by Fin 
Dechsakultho on human skin fibroblast with two 
different nanoparticles, ZnO and TiO2 (50-70 nm 
and less than 150nm for four and 24h were  showed 
that ZnO had higher toxicity after four and 24 h and 
by increasing the time of exposure, nanoparticle 
toxicity increased too. Also, they estimated IC50 
for ZnO was 49.56± 12.89 and for TiO2 was 2,696± 
667ppm [20].

The smaller sized titanium dioxide particles 
induced more cytotoxicity and oxidative damages 
and also photocatalytic cytotoxicity induced by 
Anatase of TiO2 was higher than Rutile form and 
slightly more oxidative DNA damage was founded  
after Anatase-Rutile mixture exposure compared 
with Anatase alone [21].

S.M. Hgussain and his colleagues investigated 
acute toxic effects of different nanoparticles in vitro 
rat liver cell. After 24 h treatment, TiO2 did not show 
any considerable effect on the cellular morphology 
and structure, mitochondrial function, membrane 
damage and  leakage of lactate dehydrogenase and 
reduced glutathione level at lower doses (10-50µg/
ml), in comparison, a significant cell toxicity was 
detected at the higher titanium dioxide  doses (100-
250µg/ml).

Toxicity evaluation of ultrafine (nanoparticle) 
and fine-sized TiO2 on lung epithelial cells (in vitro 
and rat lung in vivo) after 1, 4, 8 and 24h revealed  
LDH release, mitochondrial function (MTT) 
and total cell protein changes. This study showed 
ultrafine TiO2 increase LDH release in cell medium 
more than fine TiO2 but in the in vivo system, neither 
the fine nor ultrafine produced cytotoxicity. Finally, 
they suggested that cytotoxicological response to 
the nanoparticle in 48h weren’t accurately reflected 
and more prolonged observation with developed 
and validated techniques will need [22].

M. Says in his study presented cytotoxic 
response correlation with nanoscale titanium 
dioxide structure at high concentrations (100µl/
ml) and confirmed that cellular response had 
dose-response toxic effect increasing with time of 
exposure. They indicated that Anatase TiO2, 100 
times more toxic than Rutile [21,22].

Cyto- and Wang and his colleagues investigated 
the genotoxicity of ultrafine TiO2 particles on 

Human lymphoblastoid cells. Considerable 
reduction in cell viability when TiO2 (130 _g/ml 
UF-TiO2) dose was increased; and 48-h exposure 
to this dose induced more than two folds increases 
in the mutation frequency [23].

The cytotoxic mechanism of nanoparticle is not 
clarified exactly. Some theories were hypothesized 
in this area and some of them were studied. The 
mechanism of nano-TiO2 was supposed to activate 
ROS system, such as superoxide radicals, hydrogen 
peroxide and free hydroxyl radicals [24].Geotoxic 
in Chinese hamster and mouse lymphoma cell lines 
[25] cytotoxic to cultured HeLa cells [26] human 
fibroblasts [27] and Chinese hamster ovary cells 
28, and human colon carcinoma Ls-174-t cells 
29are some examples of this mechanism. A study 
by T. Unchio [21] on hamster ovary indicated that 
titanium dioxide induced cytotoxicity by producing 
OH radical under UV-A irradiation and the 
formation of OH radical varies in both crystal size 
and crystal form. TiO2 toxicity depended on Ana 
crystal concentration but weakly on the intensity of 
UVA. In contrast, Rutile form didn’t show any toxic 
effect on the target cell even with photoactivation 
[28,29].

It seems that, nano-TiO2 has no inflammatory 
effect or genotoxicity without ultraviolet (UV) 
irradiation [30], or DNA damages in human cells 
[27-31].In contrast, some others have shown 
a significant level of nano-TiO2 inflammation 
and cell apoptosis. [32, 33].Some other studies 
indicated that Anatase TiO2 (10-20nm) without 
photoactivation could induce oxidative damage 
DNA damage, lipid peroxidation and hydrogen 
peroxide production in human bronchial epithelial 
cells of human being generation, despite that 
Anatase dominant TiO2 in concentration of 
200nm more did not show independent oxidative 
stress [11].

Chronic exposure even to subtoxic dose of 
nanoparticle was another striking and exciting 
aspect of our study. In our study, oxidative 
stress responses to a subtoxic dose of TiO2 were 
investigated after four consecutive passages 
prolonged approximately [25] days and it was 
shown that hepatocarcinoma cell lines endured the 
toxicological effect of subtoxic dose by increasing 
the time exposure. Increase in total cell protein, 
nitric oxide production and lipid peroxidation 
products as the indicators of cell injury responses 
reinforced the effect of dose-dependent and time-
exposure relation with cytotoxicity of nanoparticles.      
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A study by A. Koeneman evaluated whether 
at 10μg/mL and above, TiO2 nanoparticles can 
cross the intestinal epithelial line by transcytosis 
and distrust membrane integrity or not. They 
controlled and examined the epithelial integrity 
by transepithelial electrical resistance (TEER) and 
detected that low concentrations (10 or 100μg/mL) 
of TiO2 did not cause any disruption of epithelial 
integrity and cell death after acute exposure. 

Whereas six days chronic exposure of 
TiO2chronic dropped the TEER on the1000μg/mL 
significantly (p<0.05) below the control value and 
the cells did begin to recover, after time from this 
treatment[34].

Muhle conducted a chronic inhalation 
assessment. A 1.5, 6, and 24 mg/3m test toner, 40 
mg/m3 for TiO2, and 3 mg/m3 for crystalline silica 
exposure of groups of Syrian golden hamsters for 
six h/day, five days/ wk for 18 mo were investigated.

Primary lung tumors were not detected in 
either control or toner-exposed groups. One small-
sized bronchioloalveolar adenoma was found in a 
female group exposed TiO2 and one in a female of 
the SiO2-exposed group. Slight degree of interstitial 
fibrosis and chronic inflammation were detected 
after exposure to toner high (83%), to TiO2 (82%), 
and SiO2 (91%). [35].

A new investigation showed a disrupted the tight 
junctions-permeability barrier after an immediate 
exposure to 42 μg/mL TiO2 nanoparticles and after 
4 h incubation time and an extensive effect was 
seen on membrane integrity at 24 h exposure [36]. 

Other new study in Argentina showed 
that neuroblastoma cell response to TiO2 NPs 
exposure is associated with increases in oxidative 
metabolism and cell apoptosis and ROS function 
where endoplasmic reticulum-mediated signal 
pathway supposed  to be the main neurotoxic 
mechanism[37].

The new other results of Brandao and 
colleagues showed a concentration- time- and cell-
type- dependent increase in cell uptake of TiO2 
NPs but no considerable micronuclei induction 
and apoptosis was found in any of the tested 
conditions [38].During 90 days, percentage of cell 
viability after higher doses of TiO2-NPsexpousure 
was reduced both in vitro  and  in vivo [39] or 
exposure of TiO2 NPs can lead irreverisvle affects 
on to cytoskeleton of lung epithelial cells but not in 
cumulative dose [40].

It is clear that in vitro cytotoxic effect of 
nanoparticles on cellular systems will need to be 

further information , standardized and valid in 
vivo assays to provide useful screening data about 
nanoparticles cell toxicity.

Limitation
As we added Anatase crystal to hepatocarcinoma 

cell medium in 96 wells plates, we observed a non 
homogenous precipitation of TiO2 which made a 
layer on cell medium without complete cell surface 
coverage. 

We tried to solve this problem by an excellent 
mixing of TiO2 in cell medium with a micro 
sampler.

Also, cell medium color was changed from 
red to white especially at higher dose than 3500-
4500ppm and affected optic density read by 
plate reader. Thus, higher concentration (>3500-
4500ppm) toxicity remained unclear

To solve the problem, we designed a protocol 
in which 5×104 cell were cultured in 6 wells plates 
and treated with adjusted doses of TiO2 for 24h 
, the cell samples after washing with PBS were 
trypsinized, centrifuged at 1000 rpm and accounted 
by Hemocytometer.

This process was conducted to estimate the 
exact number of cell viability after TiO2 exposure. 
Although a significant decrease of cell count 
was observed, titanium dioxide precipitation 
confounded our assessment by changes in the 
nanoparticle size and similar appearance to cell 
samples under a light microscope. So, we had to 
stand on the results of XTT assay.

The other problem was detected in the LDH 
assay performed on the collected cell medium. The 
results were in contrast to cell viability assay, and the 
amount of LDH released was gradually decreased 
at higher concentration of titanium dioxide. 

To clarify the problem, we designed another 
assay. Pure LDH enzyme activity was assessed in 
the presence of a different concentration of TiO2. 
The precipitation of nanoparticle was appeared 
again and changed sample color, and the same 
results appeared. So we supposed that LDH assay 
might be interrupted by TiO2percipitation. This 
idea requires a precise evaluation. 

CONCLUSION
These results suggest that chronic exposure, 

even to the safe doses of nanosized particles, can 
stimulate cellular oxidative and inflammatory 
responses.

When we exposed HepG2 samples with subtoxic 
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doses of TiO2, we had a significant  challenge with 
the mentioned problem. In every passage, TiO2 
was added to 5ml of cell media and were mixed 
by mixture to make a more homogenous form 
and then added to flasks. But we couldn’t omit this 
problem completely, which might affect our data.
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