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An implant is a device for replacing a damaged or deformed joint, bone, or 
cartilage. Considering the aging population and developing culture of active 
lifestyles, orthopedic and dental implants have found their stance as a fundamental 
component of medical sector, which is envisioned to be continuous. Reducing 
the rate of failures, particularly in cases of bacterial infection, is a necessity for 
meeting the extending demands for implants. One of the major risk factors of 
this field is implant infection, which can reduce the effectiveness of treatment, 
as well as increase the need for corrective surgery or extend the chances of 
mortality. Traditional antibiotics are incapable of providing the desired effects due 
to the difficulties of bacterial resistance. The exertion of nanotechnology-based 
approaches can overcome most of the limitations and obstacles of implants. 
Nanostructures and nanoparticles can facilitate the production of implant 
coatings, provide suitable materials for making implants, and function as carriers 
for the release of antibiotics. There are a number of different nanostructures 
available for this purpose. Nanoparticles and microstructures contain a larger 
number of effective bactericidal properties than smooth surfaces due to their 
significantly increased level of adhesion. This study attempted to investigate the 
antibacterial properties of nanoparticles in dental and orthopedic implants.
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INTRODUCTION
The development of implant industry, especially 

orthopedic and dental implants, is growing at an 
incredible rate. The application of over 300 000 hip 
and knee implants, as well as 100 000 and 300 000 
dental implants, are reported every year in the United 
States for replacing or restoring the functionality 

of injured and damaged tissues [1, 2]. As a matter 
of fact, the clinical utilization of implant designs 
throughout the recent years was quiet predictable. 
The purpose of designing implants is to provide 
a distinct interfacial layer and a biomechanically 
effective bone matrix. Despite being an external 
substance, the applied biomaterials in implants 
are required to exhibit biological compatibility 

http://creativecommons.org/licenses/by/4.0/.
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and proper functionality in human system, as well 
as contain applicable mechanical, abrasion, and 
corrosion qualities. The progress of biomedical 
implants in orthopedic and dental implementations 
can be confined by a deficient bone-implant 
integration and implant-related infections [3]. 
Unfortunately, the weak design of some implants 
demands for improvements and better bone 
implants. Considering the unexpected outcomes 
of failures, many implant operations necessitate a 
corrective surgery to recover from a failed implant. 
One of the related statistics is about the average 
life expectancy, since the average lifespan of a 
joint replacement is only about 10-15 years[4-6]. 
The long-term fixation of load bearing implants 
(Especially metal implants) in bony tissues has 
remained as a challenge. Clearly, the insufficient 
lifetime of implants will lead to the need for many 
revision surgeries to remove failing implants, 
especially during the lives of young patients. 
Numerous factors contribute to implant failure, 
which include inadequate initial bone growth on 
the surface of implant that requires to be integrated 
into juxtaposed bone, the generation of wear debris 
by implant articulating components that turn into 
lodges among the implant and nearby tissue and 
cause the death of bone cells, and the inducement 
of implant loosening and eventual fracture by 
stress and strain imbalances throughout the 
implant and neighboring tissue, as well as device-
related obstacles including insufficient integration, 
local tissue inflammation, and infection [7-10]. 
Implant-associated infections has remained as 
one of the principal causes of failure implications. 
Biofilm formation is assumed as the most essential 
pathogenic coincidence throughout the progress of 
infections, which is instantly triggered subsequent 
to bacterial adhesion on an implant to provide 
an efficient protection for microorganisms from 
the immune system and systemic antibiotics [11]. 
Post-surgery infections are the most challenging 
complication of orthopedic and dentistry fields. 
In the last few decades, the incorporation of 
antibiotics into bone cements was considered as an 
attempt throughout primary and revision surgery 
for preventing and treating orthopedic implant 
infections. However, not everyone believes in the 
therapeutic usefulness of antibiotic-releasing bone 
cements, since the long-term exposure of patients 
to low dosages of antibiotic-releasing bone cements 
has led to the current possibility of antibiotic 
resistance to medicine [12]. The local delivery of 

antibiotics is clearly more effective in transferring 
medicines to the affected area without causing any 
risks of systemic toxicity. [13]. Nanotechnology 
can overcome these limitations by facilitating 
the construction of surface structures for cell 
engineering and enhancing the surface structure of 
implants to promote osseous integration. Most of 
the reasons behind implant failures can be surpassed 
through the amazing potential of nanostructured 
coatings. In addition, the unique features of 
nanomaterials can provide the manufacturing of 
suitable coatings and implants as well [14, 15]. 
This work attempted to present a summary on 
the exertion of nanoparticles for controlling and 
enhancing the rate of implants while focusing on 
improved antimicrobial purposes. In this regard, 
we reviewed recent researches on the impacts 
of nanostructured biomaterials and particles for 
the antibacterial applications of orthopedic and 
dental implants to present a robust framework for 
understanding the basic interactions that control 
and prevent antibacterial processes.

REQUIREMENTS FOR SUCCESSFUL 
IMPLANT SYSTEMS

The property requirement of a modern-day 
implant can be divided into three equally significant 
categories[16]:

Safety and compatibility 
The applied materials in the manufacturing of 

implants are required to be compatible with human 
body. Next to orthopedic and dental implants, 
safety concerns should include all of the implant 
devices as well. Specifications and standards are 
meant to assist producers, users, and consumers 
in providing safety for their products. The reaction 
of tissues towards the introduction of a foreign 
material is understandable, however, it is intolerable 
for the accompanying alterations in mechanical, 
physical, and chemical features throughout the 
localized surrounding to cause local detrimental 
changes or hazardous systemic impacts. Biological, 
mechanical, and morphological compatibilities are 
the major compatibility factors that are essential for 
the bio integration of implants with the receiving 
hard tissue and the subsequent biofunctionality[17, 
18].

appealing balance of mechanical and physical 
qualities

An implant can achieve promising outcomes by 
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accommodating the needed balance in mechanical 
and physical features. The kind and action of the 
particular implant portion can configure the 
optimization of qualities, which include elasticity, 
yield stress, ductility, time-dependent deformation, 
ultimate strength, fatigue strength, hardness, and 
wear resistance. As a universal requirement, the 
ability of implants to establish a suitable mechanical 
unit with the nearby hard or soft tissues must 
remain activated throughout the entire body. The 
functionality of a loose (or unstable) implant may 
be weakened, completely prevented, or result in an 
excessive tissue response, while causing discomfort 
and pain for the patients[19-21].

 simple fabrication and reproducibility
An appealing device is required to contain a 

simple fabrication, reproducibility, consistency, 
and compliance  with every technological and 
biological parameter. Meanwhile, there are possible 
limitations to be concerned, such as the design 
of techniques for producing outstanding surface 
finish or texture, the capacity of materials for 
obtaining adequate sanitation, and manufacturing 
costs, as well as having repairing methods for the 
cases of failure[16, 22, 23].

WHY ARE IMPLANTS NEEDED?
Implants can be defined as  devices that are 

designed for replacing a damaged or deformed 
joint, bone, or cartilage. Synovial joints, such as 
the pelvis, knee, and shoulders, can operate as 
a result of this combined effort. A nourishing 
fluid is released by articular cartilage, which is a 
bearing connector tissue responsible for covering 
the bones of joints[24, 25]. However,  these joints 
are prone to degenerative and inflammatory 
disorders throughout the common area and lead 
to the inducement of joint pain and stiffness. 
The common joint cartilage caries (softening 
of cartilage) are caused as a result of aging, as 
well as other disorders such as osteoarthritis 
(bone inflammation), osteoporosis, rheumatoid 
arthritis (synovial membrane inflammation), and 
chondromalacia. Interestingly, 90% of people over 
the age of 40 suffer from such destructive diseases 
[16, 26-28]. Degeneration is mainly originated 
by three factors including the deficiency of joint 
biomaterial features, overload conditions, and the 
collapse of common repair mechanisms [29-31]. 
Although minor surgical procedures are carried 
out, there is a definitive agreement to provide 

temporary support for a large number of patients, 
implicating inefficient Joints for pain relief and 
long-term mobility as the natural replacement 
phase. In severe situations, implants can replace 
or heal human joints. The complicated and elegant 
construction of human joints is abled to operate 
in life-threatening situations, therefore, the 
development of site-specific implants that would 
be applicable in human body is a major issue for 
surgeons and scientists [32-35]. Implants are widely 
exerted in the fields of surgery, orthopedics, and 
dentistry, while their other applications include 
ophthalmology, cardiovascular, cochlear, and 
maxillofacial implementations[36-38]. 

orthopedics and dentistry implants
Millions of people around the world suffer from 

degenerative and inflammatory bone and joint 
diseases. In affluent countries, people aged over 50 
years old are accounted for half of all the chronic 
diseases These disorders are in the frequent need 
of surgery, as well as total joint replacement in the 
cases of natural joint deterioration. Furthermore, 
a variety of bone fractures, low back pain, 
osteoporosis, scoliosis, and other musculoskeletal 
issues demand for treatments with the exertion of 
permanent, temporary, or biodegradable devices. 
As a result, orthopaedic biomaterials are designed 
to be implanted as the components of a device 
in human body to perform particular biological 
functionalities through the replacement or 
repairing of various tissues such as bone, cartilage, 
ligaments, and tendons, which can also act as a 
guidance for bone repairs in specific situations 
[39, 40]. A range of orthopedic prosthetic implants 
are exerted by orthopedists for the purposes of 
replacing missing joints and bones, or to provide 
support for a damaged bone. Orthopedists most 
typically utilize knee and hip prostheses to restore 
the complete range of motion for patients in a 
relatively pain-free and short period of time. 
Prosthetic materials can be incorporated with a 
healthy bone to replace the sick or damaged bone 
in some circumstances, whereas prosthesis can 
completely replace certain parts of a joint bone [41, 
42]. The method of tooth extraction subsequent 
to an immediate implant placement is the most 
typically applied surgical practice in recent years. 
The objective of modern dentistry is to revive the 
normal function, speech, health, and appearance 
of patients, regardless of stomatognathic system 
atrophy, disease, or damage. Considering this goal, 
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dental implants can serve as an ideal choice in the 
cases of patients with a lost tooth (or teeth) due to 
periodontal diseases, injuries, or other conditions. 
Subperiosteal implants, endosseous implants 
with fibrous encapsulation, and endosseous 
implants with direct bone-to-implant contact 
(BIC)  are included among the implant systems 
that are utilized for replacing missing teeth. Dental 
implants (also known as artificial tooth roots) are 
biocompatible metal anchors that are surgically 
positioned underneath the gums of jaw bone (also 
known as medically traumatised bone) to support 
the artificial crown of places where natural teeth 
are missing. The healing period of non-union (due 
to traumatization) bone can range from three to 
six months or more upon the usage of root form 
implants ( as the closest sample in shape and size 
to the natural tooth root), which also undergoes 
the occurrence of osseointegration. The growth of 
bone in and around the implant provides a strong 
structural support for the upcoming attached or 
screw-tightened superstructure  [15, 43, 44]. The 
rate of implants usage in the oral and maxillofacial 
skeleton is being constantly increased. For instance, 
the placement of 300,000 dental implants are 
estimated to occur each year in United States. The 
application of implants can facilitate a replacement 
for missing teeth, repair the craniofacial skeleton, 
provide anchorage during orthodontic treatments, 
and even aid the formation of new bones in the 
course of distraction osteogenesis process[45-47].

Risk Factors related to Failure of Dental and 
orthopaedic Implants

The provision of informed consent is a necessity 
for every clinical treatment, which refers to the 
patients permission for taking the proposed 
treatment subsequent to understanding the nature 
of illness, procedure description, risks and benefits, 
and treatment alternatives that include the option 
of no treatment. Although a written consent does 
not always stand for a informed consent, but in 
comparison to discussion and verbal consent, 
this format is easier to comprehend and recall 
at a later date, while providing proof for consent 
considerations. Treatment is contraindicated upon 
the patients lack of acceptance or agreement with 
the recommendations. In addition, implant therapy 
may be unsuitable for patients who are incapable or 
reluctant to maintain active oral diseases, as well as 
those with absurd treatment expectations [48-50].

Since their introduction by Branemark in 

1970s, dental implants found their popularity 
as an appealing treatment for missing teeth 
rehabilitation. Nevertheless, there are limitations 
to this procedure that include the reports on the 
rate of dental implant failure ranging from 1% to 
19% . Based on the connected abutment, these 
collapses can be classified in the two categories 
of early failure and late failure. Early failures take 
place in prior to applying the functional loading, 
whereas the progress of late failures can be 
observed subsequent to the occlusal loading or the 
first removal of temporary restoration in the cases 
of immediate implant loading. Early failure refers 
to the failure of dental implants in maintaining 
osseointegration, whereas late failure expresses 
the collapse of either established osseointegration 
or performance of dental implants. Considering 
how the early failure is mainly caused by biological 
complications, the occurrence of late failure can be 
possibly related to both biological and mechanical 
complications. Peri-implantitis commonly 
implicate the resorption of soft and hard tissue, 
while its inducement is associated with biological 
difficulties. Mechanical complications may occur as 
a consequence of incorrect implant loading design 
and lead to the fracture of implant body, screw 
body, or implant supra-structure[51-54]. Next to 
including a larger percentage of bone loss, the time 
interval between diagnosis and removal of a dental 
implant in late failure is substantially longer than 
the cases of early failure. Treatment planning for 
the entire dentition should be completed in prior 
to the surgical planning for implant placement. 
Systemic diseases impose the usual limits on 
minor surgical operations, which involve implant 
placement as well. There is a paucity of evidence to 
support systemic illnesses as a contraindication to 
oral implant therapy [52, 55].

Uncontrolled hypertension is a condition of 
blood pressure that regularly reaches higher than 
160/90 mm Hg. This disorder requires immediate 
treatment due to the risks of high blood pressure 
for the patient, which include the occurrence of 
stroke, heart failure, myocardial infarction, and 
renal failure. Patients with a history of heart attack 
in their last six months should be prevented from 
implant surgery, while the cases that suffer from 
angina must be provided with glyceryl trinitrate 
tablets or sublingual sprays throughout the 
procedure[48, 55]. implant failure is associated 
with smoking, diabetes, autoimmune illnesses, 
osteoporosis, bisphosphonates, periodontitis-
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related tooth loss, genetic factors, local anatomy, 
and radiotherapy. Periodontal disease and smoking 
are considered as crucial risk factors for the late 
failure of implants [56-61]. Other prevalent late 
fracture risk factors are categorized into three 
sections based on (1) patients history (radiation 
therapy, periodontitis, gritted teeth, and premature 
implant failure), (2) clinical characteristics, or 
(3) both (posterior implant position, and bone 
grade), while considering the question of were 
there any(4) or (5) doctor’s decisions? (low initial 
stability, more than one implant in the course of 
surgery, inflammation at the surgical site during 
the first year, or usage of a cone-type overdenture). 
It is necessary for the doctors to remain cautious 
from the initial stages of evaluation up to treatment 
planning, surgery, and prosthesis selection to 
reduce the chance of late dental implant failure 
[62]. A delay in cleaning the infections at surgical 
site after spinal deformity surgery results in the 
need for the removal of implant. Patients may be 
required to repeat the instrumentation and fusion 
upon the development of exceeding deformity or 
symptomatic pseudoarthrosis subsequent to the 
implants removal [63].

Surgical site infections account for nearly 3% and 
up to one-third, of all the nosocomial infections. The 
consequences of induced complications by these 
infections in the implantation of a prosthesis, such 
as a hip replacement, can be devastating. Joint 
replacement infections commonly affect 0.5–5% 
of patients. Nevertheless, providing treatment 
for these infections in the course of retaining the 
position of prosthetic remains as a difficulty  [64].

Risk factors associated with implant infections
Infection is known as another serious side effect 

of implant surgery, which can lead to long-term 
clinical consequences and significantly increase 
the difficulty and cost of therapy [65]. Biomaterial-
associated infection is a common impact of 
modern orthopaedic surgery with the potential 
of inducing long-term pain and functional loss 
in patients. Facing infection in an orthopedic 
surgery can be a disaster for the patient and the 
surgeon, while surgical site infections (SSIs) are 
very common in this kind of surgery. According to 
current estimations, periprosthetic joint infection 
complicates up to 2.5 percent of primary hip and 
knee arthroplasties and up to 20% of revision 
arthroplasties Prosthetic joint infection (PJI). 
Although modern facilities and aseptic procedures 

have reduced the incidence of this obstacle, yet 
its prevalence remained significant in developing 
countries. The consequences of this severe condition 
include increased antibiotic usage, prolonged stay 
in hospital, repeated debridements, longer period 
of rehabilitation, and increased morbidity and 
mortality. Furthermore, eradication is another 
challenging problem due to the pathophysiology 
of infection in fracture-fixation devices that is 
attributed to growing microorganisms in biofilm. 
The three stages of infection include early (less 
than two weeks), delayed (two to ten weeks), and 
late (more than ten weeks) infections[66-69]. 
Staphylococcus accounts for up to two-thirds 
of every existing microorganism throughout 
orthopedic implant infections, which stands as the 
primary cause behind the two principal forms of 
bone infections, septic arthritis and osteomyelitis, 
both of which implicate inflammatory joint and 
bone damage. Bacterial adherence is recognized as 
the first and most crucial step of implant infection. 
This complex process can be affected by various 
factors such as environmental conditions, bacterial 
characteristics, material surface qualities, and the 
presence of serum or tissue proteins [41].

Similar to other body implants, dental implants 
can collapse by the increasing accumulation of 
plaque that is mostly generated by the two pathogens 
of Streptococcus mutans and Porphyromonas 
gingivalis. The placement of dental implants in the 
contaminated surgical field of oral cavity can exceed 
the risk of implant failure [70, 71]. Implant infections 
are frequently caused by bacterial adhesion, while 
proliferation Caries and periodontitis are both 
generated through the bacterial adherence to tooth 
surfaces. The existing biofilms on the surfaces of 
dental implant can induce inflammatory lesions 
in peri-implant mucosa, which can result in the 
inhibition of osseointegration, leading to the 
loss of nearby bone substances and in worst-case 
scenario, cause a total implant failure. According 
to the majority of case studies, these biofilm-
forming bacteria promote colonization on the 
fixed appliances of prosthodontic therapy, which 
damages the periodontal tissues. In addition, 
facing instability or mismatch conditions in the 
implant-abutment contact is another common 
cause of failures in dental implant treatments. 
The presence of microcracksmicrocracks on the 
joint surface of two-piece implants, which contain 
variable fluid flow, can facilitate the infiltration of 
bacteria and inflammatory cells and lead to the 
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inducement of bone resorption in the surrounding 
area. Periodontitis-associated germs can colonize 
the bacterium throughout the early minutes of its 
implantation . This fixture-abutment gap (FAI) is 
a suitable environment for the growth of bacteria, 
resulting in a bacterial reservoir and inducing the 
inflammation of soft tissues at the fixture-abutment 
junction [72-74]. The production of biofilm is 
triggered right after bacterial adhesion on an 
implant, which provides an efficient protection 
for microorganisms from the immune system and 
systemic antibiotics. This process is considered 
as a crucial pathogenic event in the generation of 
implant-related infections. In the form of bacterial 
groups, biofilms  are accountable for the majority 
of chronic and recurrent infections. Next to the 
recurrence of about 65–80 percent of biofilm-
related infection cases, the rate of antibiotic 
resistance is also high among the associated bacteria 
with biofilms. In laboratory studies, bacteria with 
antibiotic resistance have displayed a considerably 
reduced susceptibility to antimicrobials as a result 
of certain processes such as altered drug absorption, 
changing drug target, and drug inactivation; these 
observations were in accordance with the standard 
view of antibiotic resistance[75, 76]. Considering 
these facts, it is questionable that is there a way to 
overcome this problem?

NANOTECHNOLOGY-ENABLED MATERIALS 
FOR ANTI-INFECTION TREATMENTS IN 
IMPLANTS THERAPHY

Nanotechnology implicates the investigation 
and exertion of materials propertied that were 
dramatically changed in nanoscale (1–100 nm or 10-

9–10-7 m) or atomic scale. This field has succeeded 
in exhibiting a great potential  in the fields of 
medical science and biomedical engineering[77]. 
Polymer nanoparticles, magnetic nanoparticles, 
liposomes, carbon nanotubes, quantum dots, 
dendrimers, metal nanoparticles, and non-polymer 
nanoparticles can be listed among the examples of 
nanotechnology-based systems that are classified as 
pharmaceutical nanoparticles[78-81]. NPs are gifted 
with unique physical and chemical characteristics 
due to their high surface area and nanoscale size, 
while their reactivity, toughness, and other features 
are also affected by their distinctive size, shape, and 
structure [82, 83]. The accommodation of these 
properties has created suitable candidates for a 
variety of commercial, diagnostic, and medicinal 
applications including catalysis, imaging, cancer 

therapy, antimicrobial, medicinal, energy-based 
research, and environmental implementations[81, 
83-87]. The ability to study compounds at molecular 
level has guided the search of materials with 
exceptional qualities for medical applications. The 
usage of these unique materials has spawned a new 
study field known as nanobiotechnology, which can 
be applied to disease diagnosis, drug design and 
delivery, and implant design [88]. Considering the 
aging population and developing culture of active 
lifestyles, orthopaedic and dental implants turned 
into one of the staples of medical industry and this 
trend is expected to be continuous. In response to 
the exceeding demands for implants, it is necessary 
to reduce the rate of failures, especially those that are 
generated by bacterial infection[89, 90]. Potential 
bacteria carriers include the implant itself, surgical 
tools, the operating room, and contaminated 
disinfectants. Implant materials are an appealing 
location for the adhesion of bacteria, which can 
compromise the patients immunity and heighten 
the risk of bacterial infection. The existing bacteria 
[mostly Pseudomonas aeruginosa (P. aeruginosa), 
including Staphylococcus aureus (S. aureus), and 
Staphylococcus epidermidis (S. epidermidis)], tend 
to adhere to the surface of implants and produce 
a layer of preprosthetic biofilm with resistance 
properties to antibacterial treatment. The infection 
may progress into local inflammation or spread 
throughout the body and lead to the inducement 
of a chronic infection. Nevertheless, the early 
replacement of an implant can prevent amputation 
or death. [41]. Some of the consequences of this 
severe condition include prolonged hospitalization, 
long-term antibiotic therapy, bacterial resistance, 
the emergence of superbugs, revision surgery, or 
death. The approach of antibiotics and antibacterial 
coatings were designed in the last two decades for 
reducing the chances of revision surgery and rates 
of infection-related death. The rapid spreading of 
bacterial resistance to antibiotics over the world 
has turned into a major public health concern, 
which seems to be unsolvable due to the numerous 
resistance mechanisms. Overexpression of relative 
efflux pump activity is reported to be a common 
and important source of bacterial resistance. Efflux 
transporters in the membranes of resistant bacteria 
may contain a crucial functionality in inhibiting 
intracellular drug intake and obstructing drug 
activities. The ineffectiveness of these methods 
prompted the conduction of research on the design 
of nano-textured surfaces to mimic the bactericidal 
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capabilities and topographical characteristics of 
various animal, plant, and insect species [89, 91]. 
Researches tended to focus on the production of 
materials with nanostructured surfaces for limiting 
the growth of bacteria, biofilm formation, and 
ultimately bacterial infection without causing side 
effects, with the aim of reducing the chances of 
requiring revision surgery. Considering their wide 
application as encapsulating materials, nanoparticles 
(NPs) have the potential to boost intracellular drug 
accumulation and efficiently inhibit the activity of 
transporters [92]. Postoperative infection caused 
by medical implants emerged as a formidable 
but crucial obstacle in implant surgery, which 
sparked a flurry of nanotechnology research. The 
main applications of nanotechnology in implant 
therapy include bone replacement materials and 
implant coatings (production of biocompatible 
surfaces, for example, by implicating immobilized 
antimicrobial agents). Aside from antibiotics and 
nano particle  [93, 94], the contact to adhesion 
area of nano and microstructures is significantly 
increased, which leads to the generation of more 
effective bactericidal properties than flat surfaces. 
The height, radius, and spacing of a structure 
can affect the bactericidal efficiency of surfaces. 
Bactericidal or anti-biofouling surfaces have 

the ability to repel the adherence of bacteria. 
Moreover, anti-biofouling surfaces can inhibit the 
inducement of cell attachment due to their surface 
chemistry or undesirable surface topography, 
whereas bactericidal surfaces cause the disturbance 
and ultimately annihilation of cells[95, 96]. 
Current antibiotic treatments are still incapable of 
targeting bone infection sites and eventually result 
in ineffective therapeutic outcomes. However, the 
design of nanostructures gave rise to the possibility 
of targeted therapy[97]. As a matter of fact, 
nanoparticles bind to bacterial cells due to their 
small size to disrupt and damage their membrane, 
which consequently results in bacterial cell death. 
The antibacterial properties of nanoparticles were 
proved to be effective against Both gram-positive 
and gram-negative bacteria. These materials can 
contribute to bacterial death by releasing ions with 
the ability to attack many parts of bacteria, such as 
enzymes, DNA, proteins, Cytomembranes, and etc. 
At the same time, nanoparticles have the potential 
to boost the production of bacterial reactive 
oxygen species (ROS) that can cause oxidative 
destruction in cellular components[98-102] ( Figs. 
1). Denaturation is the result of nanoparticles 
interaction with ribosomes in particular, which 
leads to the inhibition of translation and protein 

 
 

Figure 1. Applications of nanoparticles in the prevention of bacterial infections in dental implants 

 

Fig. 1. Applications of nanoparticles in the prevention of bacterial infections in dental implants
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synthesis. Furthermore, the effective interaction 
of nanoparticles with carboxyl and thiol groups 
of -galactosidase has the potential to inhibit 
intracellular biological activities and induce 
cell death [103]. Nanoparticles can damage the 

cytoplasmic membrane of bacteria and impair cell 
respiration by preventing the entry of oxygen to 
cells, which leads to the suffocation and death of 
bacteria [104-106]. 

The weak penetration of these biomolecules is 

Table 1 Use of antibacterial nanostructures in orthopedic implants 
 

Types of nanostructure The role of nanostructure Application Reference 

silver nanoparticles -as a 
coating on hydroxyapatite  

-antibacterial activity  [109] 

 
Hydroxyapatite (HA) nanoparticles + 

silver (Ag) nanoparticles 

-as a bifunctional bone scaffold  - hydroxyapatite (HA) to form 
organic/inorganic composite 
with suitable levels of bioactivity 
  
-silver (Ag) nanoparticles were 
abled to 

add antibacterial qualities 

[110] 

HA/Cu Nanostructures -as coatings on the surface of 
titanium 

- composite coatings are able to 
induce the formation of apatite 
- improve the friction properties 
- Improve antibacterial activity up 
to a rate of 97% 

[111] 

Silver nanoparticles (Ag-NPs) multifunctional core (Ag-NPs)–
shell (pDA)–shell (HAp) 

nanoparticles (Ag@pDA@HAp-
NPs) 

- Improved hemocompatibility 
 

- reduced the cytotoxicity 
 

- obtained long-term antibacterial 
qualities 

[112] 

silver (Ag) nanoparticles -as strawberry-like Ag-decorated 
barium titanate of polymer scaffold 

- improved the electric output 
functionality of the scaffold 

- The enhanced surface electric 
charges caused a notable 

promotion in proliferation and 
differentiation of MG-63 cell 
- The scaffold prevented the 
growth of Escherichia coli by 

releasing Ag+ 

[113] 

nano-structured titania +silver 
nanoparticles 

-nano-structured titania coating 
incorporated with silver 

nanoparticles 

- prevent bacterial adhesion 
 

- inhibit post-operation infection 
in the early and intermediate 
stages and perhaps even late 
infection around the implant 

[114] 

 
 

silver nanoparticles+ HA nanocrystals 

-produced porous Ti-6Al-4V 
implants 

- enhanced the proliferation and 
differentiation of pre-osteoblasts 

 
- maintain the antibacterial 

leaching activity 

[115] 

 
 
 

Silver Nanoparticles 

-incorporation of both growth 
factors and silver (Ag) into 

hydroxyapatite (HA) coatings on 
metallic implant surfaces 

-improving osteoinductivity and 
antibacterial properties 

[116] 

 
Ag Nanoparticles 

-as Bioactive Coating on Ti AlloyIn 
dental and orthopedic implants 

  

-Improve Osseointegration and 
Antibacterial 

[117] 

Table 1 Use of antibacterial nanostructures in orthopedic implants
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Types of nanostructure The role of nanostructure Application Reference 

 
 

nanostructured titania +silver 
nanoparticles 

-as a promising therapeutic 
material for orthopedic application 

- influence on normal bone-
implant integration 

- Long-term antibacterial qualities 
and the capable of preventing 

biofilm production 

[118] 

 
 

Nanoparticulate zinc oxide 

-as a coating material for 
orthopedic and dental implants 

- prevent bacterial adhesion 
  

-generate the growth of osteoblast 

[119] 

nanostructured hydroxyapatite 
(nanoHA) +zinc oxide (ZnO) 

nanoparticles 

-as three-dimensional and 
interconnected porous granules as 
a template for bone regeneration 

- as a template for bone 
regeneration 

- restrain biomaterial-associated 
infections 

[120] 

 
 
 

zinc oxide nanoparticle 

-development of ZnO polymer 
composites for many applications, 

including endotracheal tubes, 
catheterp and implanted 

biomaterials 

- reduction in Staphylococcus 
aureus proliferation and biofilm 

formation  

[121] 

 
 
 
 

ZnO nanoparticles 

-as a multifunctional 
polypyrrole/zinc oxide composite 

coating on biodegradable 
magnesium alloys for orthopedic 

implants 

- The Ppy/ZnO coating displayed 
suitable cytocompatibility and 
osteogenic differentiation 
 
- efficient in preventing bacterial 

adhesion and growth 

[122] 

Zinc Oxide/Poly(Lactic Acid) 
Nanocomposite 

 

- as Layer Coated on 
Magnesium Alloys 

- Improve Antibacterial Function [123] 

 
silica/zinc oxide hybrid nanoparticles 

- as constructed on titanium 
implants 

- enhancing antibacterial ability [124] 

 
titanium dioxide nanotubes+ zinc oxide 

+hydroxyapatite nanoparticles 

as a nanoporous coating 
Multilayered  

- a stable and antimicrobial 
coating 

[125] 

 
Poly(lactide-co-glycolide) (PLGA) 

nanospheres 

-as a carrier of vancomycin and 
gentamicin in Schanz pins 

- superior biocompatibility 
 

- long-term antibacterial activity 

[126] 

chitosan nanoparticle -carrier of ciprofloxacin as a 
coating on titanium implants 

- efficient antibacterial activity [127] 

 
titania nanotubes 

-carrier of gentamicin sulphate 
(GS) as biomaterials in implant 

construction 

- inhibiting the initial release and 
peri-implant infection in the field 

of orthopaedics 

[128] 

chitosan nanoparticles (CNPs) carrier of Vancomycin in 
orthopedic implant 

- enhancing antibacterial and 
antibiofilm 

[129] 

 
Silk fibroin nanoparticles 

carrier of gentamicin as a coating 
in titanium-based orthopedic and 

dental implant 

- sustained drug release 
 

 -Improves osteoblast adhesion, 
proliferation and differentiation 

[130] 

Continued Table 1 Use of antibacterial nanostructures in orthopedic implants
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Types of nanostructure The role of nanostructure Application Reference 

 
poly(ethylene glycol) (PEG)-based 

hydrogel 

- coatings on osteoarticular Ti 
implants 

- sustainable drug release and 
maintain an effective 

concentration for a longer time 
 

- efficient strategy for the 
treatment and inhibition of local 

bone infections 

[131] 

chitosan-gelatin/silica -carrier of gentamicin drug as 
Versatile bioactive and coating 

system of titanium implants 

- enhancing antibacterial ability [132] 

 
chitosan/gelatin/silica 

nanoparticles 

-carrier of gentamicin coatings 
through the electrophoretic 
deposition on surgical grade 

stainless steel 

- enhancing antibacterial ability [133] 

 
mesoporous silica NPs 

- carrier of the drug vancomycin - excellent biocompatibility and 
effective antibacterial 

[134] 

 
silica nanocarriers 

- carrier of the drug gentamicin - controlling and extending the 
release of the antibiotic 

[135] 

 
chitosan–Laponite nanocomposite 

- carrier of vancomycin as chitosan 
– Laponite nanocomposite 
coatings in bone implants 

- improved cell attachment 
- drug-release rate through a 

longer period 

[136] 

 
mesoporous silica nanoparticles 

- carrier of gentamicin  - excellent mechanical properties 
 

- sustainable drug delivery 
efficiency 

 
- orthopedic surgery to prevent 

post-surgery infection 

[137] 

 
Magnesium Oxide (MgO) and Zinc 

Oxide (ZnO) nanoparticles 

- fabricating nanocomposites for 
developing artificial bones and 

biomedical implants 

- enhanced antibacterial 
properties 

[138] 

 
 

   
 

 
 
 
 
  

Continued Table 1 Use of antibacterial nanostructures in orthopedic implants
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Table 2 Use of antibacterial nanostructures in dental implants 
 

Types of nanostructure The role of nanostructure Application Reference 

 
chitosan conjugated silver 

nanoparticle 

- as a 
prospective coating material of 

titanium dental implants 

-inhibits the adhesion of S. mutans 
and P. gingivalis 

 
-  reduce the biofilm formation 

[70] 

zinc oxide + hydroxyapatite 
nanoparticles 

-as dental implant coating 
materials 

-anti-biofilm activity [139] 

copper + zinc oxide 
nanoparticles 

-as a potential disinfectant 
material of connections in 
implant provisional abutments 

- increases bactericidal activity via: 
 

- exceeded LDH release and 
intracellular ROS generation 

 
- generated the production of 

cleaved caspase-3 
-activating the apoptotic pathway 

[140] 

Nanocomposite Titania-Zinc 
Oxide 

- as thin films on Si 
substrates for Dental Implant 

- improve the bonding of 
metallic fixture with bone 
- inhibit the growth of 
both Staphylococcus aureus and 
Escherichia coli 

[141] 

nanoporous silica nanoparticles -carrier of chlorhexidine drug 
- as medical implant coating or 

as components in dental 
composite materials 

- efficient controlled drug release 
system for long-term delivery 

 
- treatment of biofilm-associated 

infections 

[142] 

hydroxyapatite (HAp) 
nanoparticles 

- carrier of 
gentamicin sulfate (Gs) and 
ciprofloxacin (Cip) 

- efficient inhibition of 
Pseudomonas aeruginosa bacteria 

[13] 

cerium oxide–incorporated 
calcium silicate coatings (CeO2-

CS) 

-as coatings (CeO2-CS) in 
dental implants 

- strong antimicrobial activity 
- good biocompatibility 

- promote the osteoblastic 
differentiation of osteoblasts 

[143] 

zinc oxide nanoparticles 
(nZnO)+ nanohydroxyapatite 

(nHA) 

-as a coating material tobone 
implants 

-improve antimicrobial 
 

-biocompatible 

[119] 

graphene/zinc oxide 
nanocomposite (GZNC) 

- as an effective coating agent 
for dental implants 

- inhibiting Streptococcus mutans 
biofilms 

[144] 

Zn(O) nanoparticles+ Porous 
tantalum oxide 

- as coating for dental implants - prevent initial bacterial 
colonization 

[145] 

 
graphene-oxide nanosheets 

(nGO)+ PMMA 

as coating for dental implants - prevent microbial adhesion 
- improved mechanical properties 

- increasing the hydrophilicity 

[146] 

polymethyl methacrylate 
(PMMA)+ silk fibroin + 

polyethyleneimine 

-material in dental applications, 
particularly as denture resins 

- improve antibacterial activity 
- improve mechanical 

[147] 

 -functional dental restoration 
material 

- enhance both mechanical and 
antibacterial properties 

[148] 

Table 2. Use of antibacterial nanostructures in dental implants
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due to their lack of water solubility, which may be 
resolvable through the synthesis of antimicrobial 
nanoparticles for improving their activity[70]. In 
comparison to native biomolecules, nanoparticles 
can be more effective as a result of their superior 
dispersion ability and access to deeper tissues. They 
can ensure the delivery of biomolecules deep within 
the body and release the bioactive chemicals at the 
desired location, succeeding in causing high levels 
of bactericidal effects upon the release[70, 107, 
108]. Tables 1 and 2 present the types of applied 
nanostructures in orthopedic and dental implants 
that contain antibacterial properties and can take 
a role in reducing or preventing infections caused 
by implants.

CONCLUSION
The presented studies exhibited a perspective 

of using different nanostructures in dental 
and orthopedic implants and described their 
antimicrobial activity. The introduced innovations 
in this work discovered a new vector of development 
for the dental and orthopedic materials and 

composites with the aim of improving the quality of 
patients lives. The ongoing assessment of researchers 
on dental and orthopedic nanomaterials is focused 
on their capability to maintain their antimicrobial 
effects, low cytotoxicity, and high strength over 
time. These nanomaterials can lead to promising 
horizons for having better performances and 
consequently improve the quality of patients lives.
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