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Objective(s): This study is an attempt to investigate the effect of nano-liposome 
containing voriconazole on voriconazole-resistant A. flavus strains on the one 
hand, and to consider the expression of cyp51A and MDR1genes, regarded as 
important genes involved in the development of resistance to triazoles before 
and after voriconazole and voriconazole-loaded nano-liposomes exert their 
effects, on the other hand.
Methods: Strains of A. flavus isolated from patients were investigated and their 
susceptibility to voriconazole was determined. Next, having applied a slight 
modification to the thin film hydration-sonication technique, the liposomal 
formulation of voriconazole was produced. After that, the voriconazole-loaded 
nano-liposome was subjected to in-vitro antifungal susceptibility testing to 
obtain minimum inhibitory concentration against fungal isolates. The qRT-PCR 
instrument was used to measure mRNA levels of Cyp51A and MDR1.
Results: The effect of nano-liposome containing voriconazole on the reduction 
of MIC in A.  flavus isolates were considered to be significant. After using MIC50 
concentration of VCZ, the cyp51A gene expression in voriconazole-susceptible 
A. flavus strains and voriconazole-resistant strains 10folds and 7folds depicted a 
downregulation, respectively, which was more pronounced in the expression of a 
liposomal formulation of VCZ (13folds and 15folds respectively). This procedure 
was applied exactly to MDR1, even though it induced 1, 2, 3, 4-fold reductions.
Conclusions: Considering the benefits of liposome-containing voriconazole 
formulation, such as the reduction of the side effects of the pure drug as well as 
minimizing the drug's toxicity coupled with the enhanced drug bioavailability and 
stability, the formulation can be used in drug-sensitive and drug-resistant species.
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INTRODUCTION
The most important clinical manifestations 

of Aspergillus as a saprophytic mold include 
invasive aspergillosis (IA), chronic pulmonary 
aspergillosis, aspergillus bronchitis, and allergic 

bronchopulmonary aspergillosis, with the 
emergence of clinical symptoms depending entirely 
on the immunological background of the infected 
host (1, 2). IA in immunocompromised patients such 
as HIV-infected ones, hematologic malignancies 
who undergo intensive chemotherapy and bone 
marrow transplant recipients is considered as a life-

http://creativecommons.org/licenses/by/4.0/.
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threatening mycosis (3, 4). Today, Aspergillus flavus 
(A. flavus) is one of the most common causes of 
IA in some particular geographic areas such as the 
Middle East and Southeast Asia. A. flavus takes a 
back seat to Aspergillus fumigatus (A. fumigatus) 
since the latter accounts for 80% of invasive and 
noninvasive infections in Europe and the United 
States (4). 

IA treatment depends on several factors thus, 
the choice and administration of medication 
cannot be sufficient, for instance, understanding 
the underlying disease and duration of 
immunosuppression are key factors in the treatment 
of immunocompromised patients in particular. 
Voriconazole (VCZ) is a first-line treatment drug 
in IA and even in some transplant centers, it is 
utilized as a mold-prophylactic agent, it is also 
found to be more effective than amphotericin B 
(5-7). In recent years, selecting the right medicine 
has been complicated due to the observation 
of differing antifungal resistance patterns in 
Aspergillus isolates in different geographic regions. 
Even today, infection-related mortality rates are 
high despite the early diagnosis and use of VCZ in 
IA thanks to the emergence of acquired resistance 
to VCZ which has failed treatment in some patients 
(4, 8).  Comprehensive molecular studies have 
been carried out on azole-resistant A. fumigatus 
strains, revealing mutations in the coding regions 
alongside the overexpression of the cyp51A 
(14α-demethylase) gene and non-cyp51-mediated 
resistance to be the main causes of resistance 
to VCZ (9, 10). Cyp51 genes (cyp51A, cyp51B, 
and cyp51C) play a crucial role in ergosterol 
biosynthesis; that is, VCZ disturbs the pathway 
by inhibiting 14-α-demethylases and finally 
destroying sterol metabolism in the cells (11, 12). 
As a result of recent studies on some VCZ-resistant 
A.flavus strains, it has been found that in these 
filamentous fungi, amino acid residue substitution 
or overexpression of the cyp51A gene is also one of 
the mechanisms of resistance to VCZ (13). But in 
this regard, some VCZ-R isolates (40-70%) lacked 
cyp51A alternations, indicating the involvement 
of other mechanisms for resistance in this triazole 
drug. Overexpression of multidrug resistance 
efflux pumps (MDR-EPs) is another important 
mechanism involved in A. flavus strains that well 
indicate acquired resistance to this antifungal (5, 
14). The two main classes of MDR-EPs involved in 
antifungal resistance include ATP-binding cassette 
(ABC) and major facilitator superfamily (MFS) (5, 

9). During studies conducted on EPs in A. flavus 
strains that are VCZ-resistant, overexpression of 
genes encoding MDR 1, 2, 4, AtrF, and/or MFS 
Eps has been observed. In some resistance isolates, 
there is neither a change in cyp51 genes nor a 
change in MDR-EPs (5, 13), which illustrates the 
need for further studies in this regard. 

Although VCZ is a newly developed antifungal 
agent, the side effects of this drug as well as the 
observation of drug resistance in some isolates 
have led to solutions for optimizing this drug. One 
such solution is the use of a drug delivery system 
that has overcome some problems associated with 
the use of this drug (15, 16). In studies conducted 
on diverse drug delivery systems, the use of 
nanoparticles (NPs), as one of these systems, has 
shown an enhancement in therapeutic efficacy in 
addition to reducing side effects (17-19). Also, these 
NPs have been the Food and drug administration 
(FDA) and European medicines agency (EMA) 
approved (20). Some of the advantages of using 
NPs entail enhanced drug stability and prolonged 
drug residence time in the blood, moreover, NPs 
can protect encapsulated drugs from in vivo 
enzymatic degradation (18, 21, 22). One of the NPs 
is liposomes; in addition to reducing side effects, 
it can minimize drug toxicity and also increase 
drug bioavailability and stability; what is more, the 
small size of these lipid NPs enhances the rate of 
penetration to tissues (23, 24). Today, due to the 
increased mortality rates caused by aspergillosis, 
resulting from VCZ-resistant A. flavus strains, the 
need for the use of NPs to optimize the drug is 
urgently felt. Therefore, this study is an attempt to 
investigate the effect of nano-liposome containing 
voriconazole (VCZ-loaded nano-liposome) on 
VCZ-resistant A. flavus strains on the one hand, 
and to consider the expression of cyp51A and 
MDR1genes, regarded as important genes involved 
in the development of resistance to triazoles before 
and after VCZ and VCZ-loaded nano-liposomes 
exert their effects, on the other hand.

MATERIALS AND METHODS 
Fungal isolates and In vitro antifungal susceptibility 
testing 

In this study, 8 strains of A. flavus isolated 
from patients with different manifestations of 
aspergillosis were investigated. These strains were 
isolated and identified in previous studies (4, 14) 
from patients in the Serology Lab of the department 
of Mycology, Tehran University of Medical 
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Sciences, Tehran, Iran. Next, their susceptibility 
to VCZ (Sigma-Aldrich USA) was determined 
using the microdilution method, according to the 
Clinical and Laboratory Standard Institute M38 3rd 
edition (25) and were kept in fungi collections of 
the laboratory. Initially, to verify the authenticity of 
strains, in vitro antifungal susceptibility testing was 
performed for the second time to determine the 
minimum inhibitory concentration (MIC) of VCZ 
against fungal isolates. Standard strains of Candida 
krusei (ATCC 6258) and Candida parapsilosis 
(ATCC22019) were also studied as qualitative 
controls.

Preparation of liposome containing voriconazole and 
Characterization of nanoparticles

Having applied a slight modification to the 
thin-film hydration-sonication technique, the 
liposomal formulation of VCZ was produced 
(26). Next, lecithin (Lipoid Company, Germany) 
and cholesterol (Sigma-Aldrich, Germany) (45:5 
w/w) were mixed in 15 ml ethanol to act as the 
solvent. Then VCZ (350µg/ml) was added and the 
solvent was evaporated in a rotary evaporator at 
50°C, resulting in dry lipid sediment on the wall 
of the flask. The obtained thin layer was hydrated 
by adding 5 ml of distilled water, culminating in 
multilamellar vesicles. The sample was subjected 
to a probing sonication (Vibra Cell - Sonics & 
Material, 130 W, 20 kHz, USA) at 80% sonication 
strength in ice bath for 10 min (10 cycles of 1 min 
sonication and 1 min rest intermittently to allow 
cooling of the sample) to let the sample shrink in 
size.

 Synthesized NPs were assessed for their 
particle size, polydispersity index (PDI) and zeta 
potential using dynamic light scattering (DLS) 
(Zetasizer-ZS, Malvern, UK). In the same vein, 
the NPs structure was probed by a scanning 
electron microscope (SEM) (TEscan, VEGA II 
XMU, Czech Republic). Briefly, the samples were 
fixed with 3% glutaraldehyde for 12 h at room 
temperature, then washed in cacodylate buffer. The 
specimens were dehydrated by ethanol and dipped 
in hexamethyldisilazane. However, a direct current 
sputter technique aided in coating the samples 
with a thin layer of gold previous to the scanning 
stage (EMITECH K450X, England) (27). The blank 
liposomal formulation was prepared in the same 
manner, without adding VCZ, though. After that, 
the VCZ-loaded nano-liposome was subjected to in 
vitro antifungal susceptibility testing to obtain MIC 

against fungal isolates. For comparison, the same 
concentration of VCZ-loaded nano-liposome was 
deployed.

Encapsulation efficiency determination
The aqueous solution was centrifuged and 

subsequently, the free drug and lipids were 
eliminated. Adding 2ml of chloroform to 1ml of 
sample leads to the extraction of VCZ from the 
liposomes as well as the degraded carrier. Then, the 
absorbance of drug dissolved in chloroform was 
read at 256 nm and the amount of encapsulated 
drug was calculated according to the calibration 
curve of free VCZ. The VCZ concentration in 
nanoliposomes was calculated using the following 
equation (28):

Amount of VCZ incorporated in nanoliposomesEncapsulation on efficiency
   Amount of totalVCZ

= ×

Amount of VCZ incorporated in nanoliposomesEncapsulation on efficiency
   Amount of totalVCZ

= ×100

Isolation of total RNA and synthesis of complementary 
DNA (cDNA)

Total RNA was extracted from conidia which 
were previously grown in liquid culture (Merck, 
Germany) and incubated at 37°C, receiving 
constant shaking at 120 rpm for 48 - 72 hours. The 
mycelia were ground in liquid nitrogen and TRlzol 
lyzing reagent (Ambion life technologies) (1ml) 
was added and incubated at RT for 5min. After 
adding 250µl of chloroform, the microtube was 
incubated on ice for 10min. Then, it was centrifuged 
at 12500×g for 15min at 4°C and transferred the 
upper, aqueous phase to a new RNase free tube. 
The ice-cold isopropanol (500µl) was added (it 
was incubated on ice for 10min) and centrifuged at 
12500×g for 10min at 4°C. The sediment was mixed 
with cold 75% ethanol and centrifuged at 7800×g 
for 8min at 4°C. The precipitant was dried at room 
temperature for 20min. Finally, the RNA was 
dissolved in 30µl diethyl pyrocarbonate  (DEPC)-
treated water and incubated for 10min at 55-60°C. 
RNA purity was evaluated by Nanodrop2000c 
spectrophotometer (Thermo fisher scientific). 
Thereafter, the RNA molecules were converted into 
their cDNA sequences by reverse transcriptase and 
used as the template for PCR amplification using 
a Sensiscript Reverse Transcription kit (QIAGEN, 
Germany). The comprehensive methodology of 
this protocol has been presented in the previously 
published article (4).
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Quantitative real-time polymerase chain reaction 
(qRT-PCR)

The published gene sequence of A. flavus 
NRRL3357 (http://www.ncbi.nlm.nih.gov/
pubmed/) was the place of origin for nucleotide 
sequences of cyp51A (NCBI accession numbers: 
XM_002375082) and MDR1 (NCBI accession 
numbers: XM_002382940). After that, primers 
(Table 1) were designed for cyp51A and MDR1with 
tubulin acting as a housekeeping gene. The qRT-
PCR instrument was used to measure mRNA levels 
of Cyp51A and MDR1 using SYBR Green Master 
Mix (AMPLIQON, Denmark). The real-time was 
carried out in a 10 μl reaction volume, containing: 
0.5μl of cDNA template, 0.25μl of each primer, 5μl 
of master mix and 4.25μl of nuclease-free distilled 
water. The program was 95°C for 5min, 45cycles at 
95°C for 10sec, 58°C for 35sec, and 70°C for 20sec. 
The relative gene expressions were analyzed by 2-∆CT 

method. Finally, a P-value < 0.05 was considered as 
statistically significant and data were represented as 
mean ± standard error of mean (SEM). GraphPad 
PRISM 6 (GraphPad Software, La Jolla California 

USA, www.graphpad.com) was used to draw 
graphs.

RESULTS 
Physicochemical characterization
Zeta Potential, PDI value and Particle Size of VCZ-
Loaded Nano-Liposomes

After the preparation of the liposomal 
formulation of VCZ by the technique of thin-film 
hydration-sonication, particle size, PDI value, and 
zeta potential of synthesized NPs were measured by 
DLS, with the results being 80.91 ± 2.78 nm, 0.076 ± 
0.012 and -2.33 ± 0.54 mV respectively. Comparing 
the results of Blank liposomal formulation, the 
findings were as follows: 53.46 ± 2.11 nm, 0.112 
± 0.01 and -11.8 ± 0.71 mV, respectively (Fig. 1). 
It should be noted that all tests were repeated in 3 
rounds.

The SEM micrograph
The SEM analysis divulged the spherical shape of 

vesicles with a relatively uniform size distribution, 
with a majority being smaller than 100 nm (Fig. 2).
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Table1. Sequences of primers
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Fig.1. Particle-size distribution spectrum of VCZ-loaded nano-liposome 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Particle-size distribution spectrum of VCZ-loaded nano-liposome
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Drug-encapsulation efficiency
In this study, liposomes utterly encapsulated 

VCZ; occupying roughly 97% of the formulation.

Antifungal activity
At this stage, in vitro susceptibility testing 

was carried out on clinical species of A. flavus 
according to the CLSI M38 3rd edition protocol in 

two separate sections. In the first stage, pure VCZ 
was used to determine MIC, and in the second 
stage, after preparing the liposome containing 
VCZ, the above test was repeated at the same 
concentration and once again, the MIC for all 
isolates was determined. It is worth noting that all 
the steps were done in duplicate and the results 
are presented in Table 2. 
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Fig. 2. Morphology of VCZ- loaded nano-liposome determined by SEM 

 

 

 

 

 

 

 

 

 

Fig. 2. Morphology of VCZ- loaded nano-liposome determined by SEM
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Table 2. MIC50 and MIC90 values for VCZ and liposomal VCZ in the isolates of A. flavus. (Mean range) 0.32 -16 (μg/mL
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Quantitative real-time polymerase chain reaction 
(qRT-PCR)

The MIC50 concentration of VCZ and 
Liposomal formulation of VCZ were used to 
evaluate Cyp51A and MDR1 mRNA levels by 
qRT-PCR in voriconazole-resistant A.flavus strains 
and voriconazole-susceptible strains (Fig. 3 and 
4). After using MIC50 concentration of VCZ, the 
cyp51A gene expression in VCZ-susceptible A. 
flavus strains and VCZ-resistant strains 10folds 
and 7folds depicted a downregulation, respectively, 

which was more pronounced in the expression of a 
liposomal formulation of VCZ (13folds and 15folds 
respectively). This procedure was applied exactly 
to MDR1, even though it induced 1, 2, 3, 4-fold 
reductions (Fig. 5).

DISCUSSION
Today, due to the increasing importance 

of aspergillosis, an opportunistic infection 
especially in immunocompromised individuals 
whose mortality is due to resistance to drugs, the 
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Fig. 3. Cyp51A gene expression in VCZ-resistant A.flavus isolates and VCZ-susceptible 
A.flavus isolates 

 

 

 

 

Fig. 3. Cyp51A gene expression in VCZ-resistant A.flavus isolates and VCZ-susceptible A.flavus isolates
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identification of Aspergillus species and deploying 
an appropriate effective drug are of immense 
significance. Therefore, in this study, those A. flavus 
strains which were isolated from Iranian patients 
with different manifestations of aspergillosis were 
studied, revealing a better efficacy of VCZ-loaded 
nano-liposome in the removal of VCZ-resistant 
A.flavus isolates when compared to pure VCZ. In 
other words, the main objective of this study was 

to attain the best formulation for both particle 
size and VCZ encapsulation to better investigate 
the antifungal properties of the formulations 
compared with pure VCZ on isolates, what is more, 
cyp51A and MDR1gene, known as two salient drug 
resistance genes in resistance to VCZ in A.flavus 
isolates, were studied in terms of their expressions. 
Fortunately, we were able to gain positive results in 
this regard.
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Fig. 4. MDR1 gene expression in VCZ-resistant A.flavus isolates and VCZ-susceptible 
A.flavus isolates 
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In this study, after the preparation of the 
liposomal formulation of VCZ by the technique of 
thin-film hydration-sonication, the physicochemical 
characterization of synthesized NPs was measured 
by DLS. The adhesive and interactive properties of 
liposomal systems such as nanocarriers in the face 
of biological cells are predominantly determined by 
their particle size, thus, adequate and decent drug 
accumulation in fungal cells is conceivable due to the 
nanometer range of NPs (29). Plus, the antifungal 
activity directly regulates the NP cell-uptake 
efficiency (16). The stability of the colloidal system 
and the status of superficial electrical dispersions 
are decided by zeta potentials indicating a negative 
surface charge (30). The zeta potential of the colloidal 
system is magnified when cholesterol is added; and 
this, in turn, boosts the stability of the particles, in 
the same vein, bilayer phospholipid gains rigidity 
and rigor when cholesterol builds up (23). Zeta 
potential edges towards negativity when the lipid 
composition of liposomal formulations houses both 
cholesterol and lecithin (31). Absolute zeta potential 
>30 mV generally is an indicator of acceptable 

stability (16). A PDI of 0.3 and below is reckoned 
acceptable, representing a homogenous population 
of phospholipid vesicles, when liposome and 
nanoliposome formulations, known as lipid-based 
carriers, are utilized in drug delivery applications. 
Generally, mono dispersion of the suspension arises 
when PDI fluctuates between 0 and 0.5, however, 
poly dispersion emerges if PDI exceeds 0.5 (32), 
hence, the good stability of these NPs is further 
validated. Then the scanning electron microscope 
was used to probe the shape of the particles. In this 
study, SEM analysis divulged the spherical shape of 
vesicles with a relatively uniform size distribution, 
with a majority being smaller than 100 nm. After 
that, the encapsulation efficiency (EE%) of prepared 
nanoliposome showed a significant entrapment of 
VCZ in the nanoliposomes. In a study conducted 
by Tian et al. in 2015, after preparing VCZ loaded 
nanostructured lipid carriers by melt, high-pressure 
homogenization, they also reported that VCZ was 
successfully entrapped into loaded nanostructured 
lipid carriers (NLC) NPs, with EE% of VCZ-NLCs 
being 75.37% (16).
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Fig. 5. After using MIC50 concentration of VCZ, the cyp51A and MDR1 gene expressions in 
VCZ-susceptible A. flavus strains and VCZ-resistant strains depicted a downregulation which 
was more pronounced in the expression of a liposomal formulation of VCZ. 
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According to the literature review, this was the 
first study on nano-liposome containing VCZ on 
VCZ-resistant A.flavus isolates in Iran. According 
to the findings of this study and our hypothesis, 
the effect of nano-liposome containing VCZ on 
the reduction of MIC in VCZ-resistant A.flavus 
isolates was considered to be significant. In a 
study by Tian et al. who investigated the effect 
of VCZ nanostructured lipid carriers against 
Candida albicans, it was reported that VCZ-NLCs 
perpetuate the antifungal activity of VCZ and 
boost the efficiency of antifungal drug delivery to 
C. albicans (16). In another study by Asadi et al. 
which was conducted on the antifungal effects of 
nanoliposomal fluconazole on resistant Candida 
species, the same results on fluconazole were 
obtained and the positive effect of nanoliposomal 
fluconazole formulations in reducing MIC 
compared to pure fluconazole was reported (23). 
A further study by Sarrafha on nanoliposomal 
fluconazole in A. flavus and A. fumigatus isolates 
yielded positive results of nanoliposomal 
formulation as opposed to pure drug regarding 
antifungal effects (24).

Based on our results and in line with the 
previously performed experiments on Aspergillus 
spp., unlike the susceptible strains, the VCZ-
resistant strains manifested a striking up-regulation 
in cyp51A gene (5folds) (P<0.0001) as well as 
MDR1 gene (7folds) (P<0.0001) (4). As noted, in 
several studies, point mutations and overexpression 
of cyp51A and MDR1 genes are responsible for the 
resistance of some Aspergillus spp. to azoles such as 
VCZ (5, 33, 34). In a study conducted by Sharma 
et al. on VCZ-resistant A. flavus clinical isolates, 
the upregulated levels of MDR1 and cyp51A gene 
expressions were reported (35) which confirms our 
study. In this study, after observing the elevated 
expression of genes in resistant isolates as compared 
to sensitive isolates, to evaluate the effect of pure 
VCZ as well as the liposomal formulation of VCZ, 
the level of gene expression was re-evaluated in two 
stages. The results of this phase overlapped with the 
results of in vitro antifungal susceptibility testing. 
That is, after using MIC50 concentration of VCZ, 
the cyp51A gene expression in VCZ-susceptible 
A. flavus strains and VCZ-resistant strains 10folds 
and 7folds depicted a downregulation, respectively, 
which was more pronounced in the expression of a 
liposomal formulation of VCZ (13folds and 15folds 
respectively). This procedure was applied exactly 
to MDR1, even though it induced 1, 2, 3, 4-fold 

reductions (Fig. 5). According to the available 
literature, the positive effect of liposomal VCZ 
formulation versus pure VCZ can be observed in 
the number of gene expressions in drug-resistant 
species, in particular.

CONCLUSIONS
The results of this study and the subsequent 

complementary in vivo studies promise the 
utilization of VCZ-resistant A.flavus isolates to 
formulate liposome-containing soon. On the 
other hand, considering the benefits of this drug 
formulation, such as the reduction of the side 
effects of the pure drug as well as minimizing 
the drug’s toxicity coupled with the enhanced 
drug bioavailability and stability, the formulation 
can also be used in drug-sensitive species. The 
yielded results emanating from the application of 
liposome containing VCZ give good grounds for 
an alternative therapeutic platform and fruitful 
treatment of invasive aspergillosis.
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