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As a considerable fact, the worldwide application of dental implant operations 
have significantly increased throughout the past decade, while the future rate 
of implant failure and revision operations seems to be similarly high as well. The 
two main factors that lead to implant failure are insufficient osseointegration 
and bacterial infections. The available surface coatings and surface modification 
techniques are incapable of providing long-term stability. Additionally, the 
factors of cell adhesion and survival are mostly influenced by the implant surface 
features of chemical construction, surface energy, wettability (hydrophilicity/
hydrophobicity), coarseness, topography, and surface arrangement. Laser 
surface texturing (LST) is recognized as the most promising method for the 
production of biocompatible, antibacterial, and suitable surfaces for advanced 
bone mending due to offering accurate control over surface topography, 
morphology, wettability, and chemistry. This approach can provide micro and 
nano-texture patterns for a broad variety of biomaterials. The present study 
investigated and introduced the impression of Laser surface texturing (LST) on 
some physical and chemical characteristics of dental implants in order to aid the 
conduction of assessments on novel designs of dental implants.
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INTRODUCTION
Dental implants are considered as a common 

component of prosthetic rehabilitations due to 
being employed in between 15 to 20 percent of 
dental prostheses. In United States, 1 to 2 million 
of implants were implanted in 2010, which is 
predicted to rise up to 2 to 4 million annually by 
2020 [1]. Implant dentistry is now regarded as a 
therapy option. Despite the general high success and 
survival rate of dental implants, yet this procedure 
is challenged with certain issues and peri-implant 
illnesses that cause substantial difficulties for both 
patients and clinicians. These complications can 
be divided into the two groups of mechanical and 
biological problems[2, 3]. 

Distant osteogenesis and contact osteogenesis at 
the surface of implant complete the biomechanical 

stability. The clinical failure of an implant is 
mostly associated with the dental fixture, which 
must be removed due to the incompatibility 
of osseointegration (early failure) or bone 
maintenance (late failure). Some of the reasons 
behind early failures include the weak situation 
of bone, the health statues of patient, absence of 
mechanical stability, infections, and other factors, 
while the inducement of functional overload, peri-
implantitis, and subpar prosthetic construction are 
typically linked to late failures[4, 5].

 The majority of dental implant systems is 
consisted of the implant and abutment, which 
starts with the placement of endosteal component 
at the beginning of surgical phase, and is followed 
by the general attachment of transmucosal 
connection after implant osseointegration in order 
to maintain the prosthetic restoration. The failure 
of peri-implantitis treatment may result from soft 
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tissue inflammation, which occurs as the oral 
bacteria colonizes among the open spaces of these 
components. Several physiological factors can 
impact prosthetic restoration and the connection 
of implant-abutment connection in the course 
of chewing and biting, since for instance, such 
forces can cause a pressure as high as 120 N in the 
axial direction on a single molar implant. There 
are reports on the value of short force maximum, 
which reaches up to an average of 847 N in males 
and 595 N in females. In the course of physiological 
function, the cyclic loading forces must exceed 
the maximal strength of an implant-abutment 
connection to prevent the gradual loosening or 
failure of connection that occurs by fatigue. The 
inducement of fatigue failure can be triggered 
by the absence of force fitting or by the involved 
form-closure in the design of the connection. The 
factors of preloads deficiency at abutment screw 
and the ensued unscrewing or fatigue failure of 
screw materials are the main causes of loosening in 
implant-abutment connections[6-8].

Next to mechanical difficulties, the biological 
issues of implants proved to be as prevalent and 
serious as well, such as the case of marginal bone 
loss, in which the survival of both implant and the 
prosthesis it supports is threatened. The effective 
parameters on crestal bone loss include peri-
implant tissue infection, improper fit at the interface 
of implant-abutment, and surgical trauma, as well 
as biomechanical components associated with the 
utilized occlusal load in the course of masticatory 
performance and parafunction [9, 10]. A successful 
osseointegration process is dependent on the 
two main factors of implant’s surface features 
and the macroscopic design of implant, which is 
responsible for maintaining the required primary 
stability for the induction of osseointegration as 
a biological procedure [11, 12]. In coordination 
with numerous assessments, surface alteration in 
implants can considerably increase the progression 
of osseointegration and extend the percentage of 
bone-to-implant contact (BIC). Additionally, the 
factors of cell adhesion and survival are mostly 
influenced by the implant surface features of 
chemical construction, surface energy, wettability 
(hydrophilicity/hydrophobicity), coarseness, 
topography, and surface arrangement. [13-16].

Surface morphology can significantly influence 
the optical, mechanical, wettability, chemical, 
biological, and other aspects of a solid surface. There 
are limitations to the current surface modification 

techniques of surface coating and surface chemical 
adjustment. Due to its weak mechanical structure 
and possibility of non-uniformity, surface coating 
can provide a low stability for long periods of 
usage. On the other hand, the adjustment of 
surface chemistry can result in the occurrence 
of chemical reactions. These deficiencies 
persuaded scientists to laboriously search for 
the proper adjustment of surface qualities and 
try to enhance the recent biomaterials. These 
assessments led to the emergence of an innovative 
and adaptable approach for designing a broad 
range of nanostructured products with applicable 
features for numerous applications in photonics, 
plasmonics , optoelectronics, biochemical 
sensing, micro/ nanofluidics, optofluidics, 
biomedicine, and etc. Laser surface texturing 
(LST) proved to stand as an auspicious technique 
for achieving reassuring results in the fabrication 
of biocompatible, antibacterial, and early bone 
healing surfaces by providing an explicit control on 
surface topography, morphology, wettability, and 
chemistry. Considering its potent ability to create 
micro and nano-texture patterns for a broad variety 
of biomaterials. [17-19], this work attempted to 
assay the impacts of Laser nano surface texturing on 
physical and chemical features of dental implants.

THE APPLICATION OF LASERS AND LASER 
SURFACE TEXTURING IN DENTISTRY

The numerous uses of lasers vary from basal 
scientific and industrial fields to medicinal and  
manufacturing sectors. The capability of recent 
conventional laser sources for fabricating enormous 
amounts of energy in small locations is confined 
by the diffraction limitation of converging optics 
and laser frequency. The unique and adaptable 
instrument of lasers can be utilized for a variety of 
applications, similar to cutting, welding, soldering, 
and surface functionalization, which is provided by 
their efficacious and direct discharge of energy on a 
manageable space without demanding any material 
cases. These developments sparked their usage in 
the medical products of clinical implementations 
and assessments, leading to the achievement of 
significant advancements in the majority of medical 
specialties that particularly involve dentistry [20-
22].

Considering the involvement of lasers in 
nearly every dental specialty for more than 20 
years, their usage in dentistry  cannot be labeled 
as a revolutionary technique. The very first dental 
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utilization of this technology was reported in 
1960s, which faced a rapid increase throughout 
recent decades. The implication of dental lasers as a 
relatively new technology in clinical dentistry helped 
in addressing some of the issues of traditional dental 
techniques[23, 24]. These applications include the 
performance of lasers as a carving tool for rigid 
dental tissues, a diagnostic instrument for the 
identification of caries, a disinfecting tool for root 
canals, and a tool for subgingival calculus. There 
are also reports on their exertion in endodontics 
that involve their exploitation in apicectomy, pulp 
diagnostics, dentinal hypersensitivity, pulp capping 
and pulpotomy, root canals sterilization, and 
root canal forging and obturation. Furthermore, 
the  employment of lasers for hard dental tissues 
resulted in lowering the disquiet and dental concern 
of patients in regards to dental rotary cutting 
devices due to the lack of using any injectable local 
anesthesia [20, 25].

Today, the clinical implementations of laser 
technology is mostly used for the treatment of hard 
and soft tissues and dental materials. Moreover, 
lasers can provide new methods for the refinement 
of dental substances similar to metals, ceramics, 
and resins, which demand high energies and careful 
management. This approach was suitable enough to 
replace many conventional techniques and simplify 
the processing of tough and sensitive materials. 
Additionally, there are reports on the promising 
results of employing ultrafast lasers in dentistry due 
to facilitating the conduction of surface processing 
for challenging cases such as incredibly rigid 
ceramics, similar to zirconia, with the induction of 
slight structural alterations[26, 27].

The method of surface texturing involves 
creating a specific pattern or texture on a work 
surface. It is a useful technique for surface 
modification that improves the material’s 
tribological characteristics of materials including 
load capacity, wear resistance, and coefficient 
of friction. Researchers have used a variety of 
texturing techniques to create micro/nanopatterns 
on working surfaces, which include laser surface 
texturing (LST), electric discharge texturing, 
focussed ion beams, electrochemical machining, 
hot embossing, lithography, and mechanical 
texturing. The propitious emergence of laser 
surface texturing (LST) among the other texturing 
techniques is the result of its supreme effectiveness, 
controllability, environmental friendliness, and 
precision. The process of LST involves the melting 

and vaporization of materials by ablation as the 
high-energy of laser beams impinges the working 
surface [28-31]. 

The irradiation of working surface is conducted 
by a focused laser beam during the laser ablation 
process in order to heat up and thus remove the 
work material from the irradiated area through 
melting and vaporization. The modification of 
surface topography is followed by removing the 
selected materials. As a practical tactic, textures 
can be created by laser ablation  by its rapid, 
micron level accuracy in the removal of materials 
[32-34]. There are two types of laser ablation, 
including pyrolytic and photolytic procedures. In 
pyrolytic cases, the energy of absorbed laser light 
by the material is converted into heat and initiates 
the process of melting and vaporization, whereas 
photolytic reactions implicate the induction of 
chemical reactions by photon absorption that is 
followed by the displacement of material’s binding 
energy[35, 36]. As a forefront technique, laser 
surface texturing (LST) is capable of creating 
prevalent and duplicable textures in ranges of 
micro- and nanoscales, while due to its precise, 
flexible, and inexpensive features, it is under 
wide investigations for biomaterials processing. 
Considering its applicability in regards to metals, 
composites, polymers, and ceramics, this method 
can simplify the creation of complex geometry and 
small features on surfaces. According to related 
studies, this technique has the ability to improve 
some physical and chemical characteristics of all 
types of implants, especially dental implants [18, 
37-39].

THE IMPACTS OF LASER SURFACE 
TEXTURING (LST) ON THE PHYSICAL 
AND CHEMICAL FEATURES OF DENTAL 
IMPLANTS

The creation of textures on an implant can be 
done through the methods of grit blasting, acid 
etching, anodic oxidation, and chemical vapor 
deposition, which are difficult to be repeated despite 
being quick and simple. LST was identified as a 
potential technique for implant modification due 
to offering a rapid, clean, and precise modification. 
The surface topography modification of diverse 
substances was broadly attempted through the 
exertion of laser surface texturing in order to tune 
the obtained optical, tribological, biological, and 
other surface features. The operating mechanisms 
of surface textures can affect the behavior of dental 
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implants. The attributes and texture of implants 
surfaces is the main factor behind the management 
of tissues responses. The surface topography, 
construction, wettability, and chemistry can be 
accurately managed by laser surface texturing 
(LST). This suited approach can aid the production 
of  biocompatible, antimicrobial, and convenient 
surfaces for early bone healing[37, 40, 41]. 

The crucial parameters of design and 
topography can severely impact the initial 
osseointegration procedure of dental implants. The 
effectiveness of connection method has a direct 
responsibility in regards to the long-term stability 
of bone tissue within the neck of dental implant. 
A rigid surface can enhance the contact area of 
implants by osteoblasts and consequently accelerate 
the rate of bone healing. Additionally, the bone 
resorption and healing time of dental implants can 
be decreased by improving the factors of interfacial 
stress distribution and bonding strength [42, 43]. 
The strong impact of surface topography and 
roughness on the responses of cells and tissues is 
undeniable. The function of surface topography 
is known as a captivating topic throughout the 
assessments of implant dentistry. In contrast 
to the smooth surfaces, a larger surface area is 
available on the surfaces of textured implants to 
achieve a more efficient integration with the bone 

by osseointegration. The ingrowth of tissues can 
be also provided by textured surfaces. The direct 
interaction of macro, micro, and nanoscale surface 
topography with cells results in promoting the 
parameters of cell growth, adhesion, migration, 
proliferation, and differentiation. Laser surface 
texturing can affect and improve the qualities 
of cell adhesion and survival of dental implants, 
which depend on a number of factors that include 
chemical construction, surface energy, wettability 
(hydrophilicity/hydrophobicity), coarseness, 
topography and surface framework [44-46] ( Fig. 
1).

Chemical Composition and Wettability 
The creation or deliberate introduction of an 

explicit surface chemistry during the fabrication 
process is contributed to the exerted rough 
surface. Nowadays, one of the most important 
research topics is the biocompatible character of 
a material with host tissues. Considering the high 
biocompatibility, corrosion resistance, strength, 
and osseointegration capability are also quiet 
essential in the course of selecting a proper implant 
material. Additionally, the composition and 
position of an implant, as well as the patient’s health, 
are among the other factors that can affect the 
biocompatibility of an implant’s components[15, 

 

 

 
 

Fig. 1. The impact of laser surface texturing on the physical and chemical characteristics of dental implants 
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42, 47]. In correlation to hydrophobic surfaces, 
the results of numerous assays reported the 
tendency of hydrophilic surfaces to improve 
the initial stages of cell adhesion, proliferation, 
differentiation and bone mineralization[48, 
49]. The category of materials similar to metal, 
ceramic, polymeric, and composite biomaterials 
are suitable for bone and tissue transplantation 
due to their superior biocompatibility [50-52]. The 
performance of cells throughout the beginning 
stage of osseointegration can be impacted by the 
wettability feature of implant surfaces. The higher 
suitability of hydrophilic surfaces (with the water 
contact angle range of 40° to 70°) than hydrophobic 
surfaces is due to the interacting manner of  human 
body fluids, cells, and tissues with implant surfaces 
[53-57]. The adhesion of ions and proteins on the 
surface determines the progression of cell adhesion. 
Hydrophilic surfaces proved to promote higher 
levels of protein adsorption than their hydrophobic 
counterparts, while the extension of hydrophilicity 
results in intensifying the primary attaching states 
of osteoblastic cells. Meanwhile, the superior 
benefits of exerting moderate hydrophilicity (∼40∘ 
∼70∘) is a notable fact, which is facilitated through 
the promotion of balanced protein adsorption 
and its more advanced primary interaction, 
motility, proliferation, and cells differentiation 
[37, 56, 58]. The production of well-defined, 
regular micropatterns by chemical machining and 
sandblasting is considered as a challenging task. 
Despite to the chaotic nature of sandblasting, the 
method of etching is hampered by the exceptional 
corrosion resistance and passive oxide layer of 
titanium alloys, which is commonly generated in 
addition to the frequent application of dangerous 
chemicals throughout the operation. Well-defined 
features are necessary to establish the cause-and-
effect correlations between particular traits and also 
develop more rapid, long-lasting osseointegration. 
For this aim, the employment of laser surface 
texturing (LST) can enable the creation of new 
surfaces. As the laser beam interacts with varying 
engineering materials, certain thermal and optical 
effects are achieved and utilized in the course of 
laser surface modification techniques. Massive 
amounts of energy are absorbed as the particles are 
being ejected from the surface of target. Ablation 
or vaporization are the foundations of removal 
mechanism, while the effects of fluid dynamics 
and thermal conduction can be also noticed 
throughout the majority of operation. Being 

conditional on the strength of density and temporal 
working manner of a laser, some particular ablation 
systems can dominate the other methods, Clearly, 
a wide range of variables in a process can directly 
affect the interaction of lasers with the exerted 
material, which in turn influences the advancing 
effectiveness and statues. Therefore, it is possible to 
optimize the topography and chemistry of surfaces 
for the designated biomedical implementation [37, 
59].

It is possible to achieve a solid surface with 
an ideal wettability for an explicit liquid by 
combining the factors of surface topography 
and chemistry[60, 61]. In coordination to the 
results of numerous researches, surface micro/
nanostructuring can provide the means for 
adjusting the  wettability statues of a solid surface. 
Apparently, a diverse range of wetting plots can be 
obtained for designing a surface with hierarchical 
coarseness and smaller nanostructures on top 
of larger microstructures. Water is able to enter 
a nanostructure, microstructure, or both. The 
surfaces that contain deep microstructures and rich 
nanostructures, with a high dual roughness result 
in trapping a layer of air among the surface and 
droplet, which eventually turns the conditions into 
an extremely superhydrophobic state. A shallower 
surface microstruc-tures can facilitate the entry 
of some portions of water droplet, which converts 
the wetting phase into an intermediate metastable 
or combined state[62-64]. According to uthor’s 
group, many intense wetting scenarios can be 
created on alaser-textured surface by managing the 
dispersive and non-dispersive elements of surface 
chemistry. Superhydrophobicity, superoleophobicity, 
superhydrophilicity, and superoleophilicity, as 
well as the co-existence of superoleophobicity 
and superhydrophilicity are some examples of 
extremely high cases of wettabilities[65].

Due to its simple processing setup and 
operation, laser direct writing is the most frequently 
employed method for the production of textures 
on substrates in the cases of extremely wetting 
surfaces. The manufactured surface frameworks 
rely on the operating factors of lasers, such as pulse 
energy and duration, rate of repetition, speed of 
scanning, wavelength, and working environment, 
polarization, etc.), as well as substrate material 
qualities that include thermal conductivity, specific 
heat, bandgap, etc. The range of pulse widths in 
lasers start from a few nanoseconds and reaches up 
to a few femtoseconds along with the wavelengths 
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confine of 355 nm (UV laser) to 1064 nm (IR laser)
[66-70]. Nearly every laser texturing techniques 
implicate the usage of top-down process and 
naturally results in the production of hierarchical/
dual scale constructions (i.e., both microscale 
and nanoscale structures) or nanoscale laser-
induced periodic surface frameworks (LIPSS). 
The manufacturing of surface structures involved 
a variety of pulsed lasers with pulse durations in 
the ranges of nanosecond (10-9) which can provide 
microscale structures, as well as picosecond (10-12) 
and femtosecond (10-15) that aid the production of 
nanoscale features[71-74].

According to common knowledge, the typical 
wetting features of surfaces can be altered through 
the exertion of chemical approaches in the shape 
of chemisorbed monolayers. The frequency of 
employing silanes in chemical treatments is due 
to their suitability in being directly modified with 
both superhydrophobic and superhydrophilic 
activities [75-78]. Fluorinated groups that contain 
a low rate of binding energies can decrease the 
surface energy of nanostructured surfaces and 
induce superhydrophobicity. Meanwhile, the 
appearance of attaching nitrile (-CN), carbonyl 
(-C(=O)-), and carboxyl (-COOH) groups lead to 
the occurrence of significant alterations throughout 
the hydrophilicity of a surface by their high polarity. 
There are certain groups in these chemical reagents 
that function as a reactive group and respond to the 
laser textured Surface to facilitate the attachment of 
molecules to the textured surface, while some other 
explicit groups take functional responsibilities for 
adjusting the surface energy/wettability[79-82].

Surface roughness or surface topography
The impacts of surface roughness on extending 

the rate of mechanical retention (interdigitation) 
and facilitating excellent stress distribution can 
significantly affect bone healing and improve the 
biomechanical qualities. There are three levels of 
surface roughness that implicate macro-roughness 
(Ra scale around 10µm), micro-roughness (Ra scale 
around 1µm), and nano-roughness (Ra scale<200 
nm). Ra refers to the arithmetic average of absolute 
values in the vertical deviations of a mean plane 
[15, 40].

Superior bioactivity provides the induction 
of bone fabrication at the implant-bone 
contact and consequently shortens the period 
of osteointegration. The initial stabilization 
of implants is aided by microtopography, 

which promotes bone growth and osteoblast 
differentiation. Moreover, nano-topography 
enhances the factors of protein Adsorption, cell 
growth, and rate of osteointegration. The benefit of 
three dimensional frameworks is the facilitation of 
osteoblasts with a sufficient amount of nutritions. 
According to research results on nanostructures 
with controlled osteoblast proliferation, despite 
the main accountability of microstructure for 
osteoblast differentiation, a decrease was observed 
in cell proliferation as the cell differentiation 
was increased by microstructure. Therefore, the 
design of micro-/nanohierarchical framework 
was under the objective of quickening the rate of 
cell differentiation and proliferation. Among the 
available methods for creating various topographies 
from nanoscale to macroscale, laser surface 
texturing is the most frequently utilized approach 
due to its rapid processing rate, high versatility, 
and ability to perform selective areas adjustment  
[15, 54, 83-86]. The artificial or natural presence 
of surface topography, or even surface roughness 
in the possible range of  several micrometers to 
nanometers[87], may be observed on a real-world 
surface in the course of manufacturing procedure. 
Roughening the smooth surfaces of implants can 
improve their initial fixation and stability, while 
in comparison to smooth cases, the surfaces that 
contain a high rate of coarseness can promote a 
greater interlocking reaction throughout the bone 
interface zone of implant [15, 54, 88].

In the recent designs of dental implants, the 
application of surface topography adjustments, as 
well as biological and non-biological coatings, were 
considered to impersonate biological surroundings 
and decrease the possibility of inflammation 
and infection[89]. The focus of many has been 
pulled towards small dimension specifications 
of textures, which imitate multiple tissues and 
their interfaces similar to micro- and nano-scale 
topographies; these regions are commonly referred 
to as cell microenvironment. One of the crucial 
factors throughout the design of products for 
biomedical implementations is the management 
of microenvironment. Previous assays denoted 
the impacts of cell microenvironment on cellular 
architecture, cell mechanics, cell proliferation, 
and cell performance [90]. According to related 
studies, the extension of human primary cells 
on Ti substrata can be guided by particular sub-
microscale textures. There are also evidences on 
the existence of localized single mesenchymal 
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stem cells in varying adhesive forms, while 
their differentiation is apparently controlled by 
shape anisotropy. A number of groups reported 
the disparity of cells adhesion and spreading 
in the scale of microenvironment [91-95]. The 
significance of applying topography for managing 
mesenchymal stem cells (MSCs) in bone tissue 
engineering stands as a possibility. The process of 
cellular enhancements were remarkably influenced 
by the attaching and discriminating power of stem 
cells to particular surfaces. Histological proofs are 
indicative of the development of new bone at every 
side of the inert object during osseointegration, 
forming an unmediated proximity among the bone 
and applied implant. Along with the factors of 
inflammation degree and excessive force, the status 
and quantity of osseointegrated bone all over the 
implant may affect its stability and consequently its 
rates of failure.  Blood-mediated osseointegration 
of osteoblasts or MSCs onto the implant surface 
is dependent on the initial fibrin adhesion in the 
course of osseointegration and the following 
mineralization[58, 96-98].

Anti-bacterial capability and biocompatibility
The accumulation and adherence of bacteria to 

biomaterials is a major challenge in the exertion 
of long-term implants, since it can result in 
biomaterial-centered inflection and unsatisfying 
biocompatibility [99, 100]. The significance of 
implanted biomaterials in the success of available 
orthopedic and dental methods is undeniable. 
Considering the leading stance of microbial 
infection in the failure of implants, the most 
important pathogenic process throughout 
the growth of infection on biomaterials is the 
production of biofilms that is immediately 
triggered after bacterial attachment[101]. Some 
of the elements that might connect bacteria to the 
implant and result in bacterial infection include 
the type of bacteria species, exerted materials in 
implant, environmental parameters, and most 
significantly the chemical and physical qualities 
of the applied materials in implant surfaces [99, 
102-109]. Therefore, the management of surface 
properties is a possible strategy for prolonging 
the lifespan of implants. Two lines of reasoning, 
including surface chemical adjustments and surface 
physical topography, were developed in response 
to this statement. Related researches reported the 
stance of nanotubes, nanowires, and nanopillars are 
the main subjects of anti-bacterial nanostructure 

studies. There are several investigations that 
confirmed the efficiency of nanotubes in 
prohibiting bacterial adhesion in Staphylococcus 
epidermis while supporting cell adhesion. Despite 
the satisfactory bacteriostatic characteristics of 
some structures, similar to nanotubes, yet the 
improvement of their biocompatibility requires 
the performance of additional treatments such as 
heat treatment and polymer coating [110-113]. 
Next to the possible induction of  toxicity, the 
long term application of chemical modification 
can sometimes result in a poor performance in 
preventing bacterial adherence; therefore, several 
researchers attempted to assay the topic of surface 
physical adjustment [114, 115]. Nevertheless, they 
mostly focused on either on antibacterial capability 
or biocompatibility, while the interactions of 
topography and bacteria and cells on the same 
framework were insufficiently investigated [110].

 An extra layer can be produced on the surface 
of implants through the loading or diffusion of 
substances. Surface modification refers to the 
alteration of an implant’s thin layer at atomic, 
molecular, or geomorphological levels. Apparently, 
the factor of bacterial adhesion can be explicitly 
advanced or inhibited by topography, stiffness, 
surface charge, hydrophilicity, and hydrophobicity 
of implants surfaces [116-118]. The adjustment 
of surface morphology can change the surface 
characteristics of implant products, including 
surface coarseness and surface nano-micro-
hierarchical construction. Certain studies reported 
the successful reduction of bacterial adhesion 
through the exertion of specific material surfaces 
with nanostructured topographic qualities. 
Among the numerous available methods for 
creating nanostructures (such as photolithography, 
femtosecond laser, electron beam radiation, 
chemical etching, anodization, etc.) , laser surface 
modification proved to offer the highest degrees 
of controllability and flexibility. Therefore, laser-
induced surface structures, with the potential of 
fending off bacterial colonization and improving 
the obtained biocompatibility, were highlighted 
as an applicable approach for the attainment 
of implant patterned surfaces for long term 
applications. Some studies indicated the possible 
ability of this technique to prevent the entry 
of S. aureus into the depressions, which would 
consequently reduce the rate of adhesion. An 
extending number of researches confirmed the 
effectiveness of lasers in altering the surface 
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characteristics of biomaterials in order to enhance 
their biological and tribological capabilities. The 
common knowledge of this field signifies the 
important role of topographic properties of surfaces 
in the rate of bacterial adhesion. In addition, 
discoveries denoted the sensitivity of bacteria to 
the space between nearby pillars, which include 
Pseudomonas aeruginosa, S. aureus, Escherichia 
coli (E. coli), and Helicobacter pylori [119-124]. In 
conformity to observations, next to providing an 
extension in the bactericidal features of surfaces, 

the technique of surface modification can also 
improve the adherence capability of a substrate to 
human cells. Additionally, there are reports on the 
achievement of remarkable antibacterial impacts 
from materials with nanopatterned surfaces against 
microorganisms that are impervious to antibiotics, 
such as Methicillin-resistant Staphylococcus aureus 
(MRSA)[110, 125]. Table 1 presents a summary on 
some of the most important applications of laser 
surface texturing (LST) in the physical and chemical 
properties of dental implants. Furthermore, there is 

Table 1: An overview on the application types of laser surface texturing (LST) in improving the physical and chemical features of 
adental implants  

 

 

-

-

-

-
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an intimate relationship between biocompatibility 
and the reaction of cells that are in correspondence 
with the surface of employed material, which 
particularly implicate the factor of adhesion. The 
physico-chemical features of a implant surface is 
the determining parameter of tissues feedback. 
Moreover, the type of  implants interaction with 
their biological surrounding is regulated by surface 
qualities, which implicate topography (or texture), 
surface chemistry, surface energy, or wettability 

[32, 40, 126].
The provided contents and examples in the 

table confirmed the rapidness, cleanness, and 
accuracy of LST as a prospective approach for the 
conduction of implant adjustments, which can 
aid the design of hydrophilic surfaces on implants 
through the extension of their wettability[50, 52, 
144]. In addition, this ultrafast procedure can 
extend the surface wettability of an implant and 
adjust the cytoskeleton format, distribution and 

 

, Continued. 
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area of FAPs, and proliferation in order to guide 
the performance of human mesenchymal stem 
cells (hMSCs). Furthermore, there are reports on 
the exertion of lasers for executing the coating of 
hydroxyapatite (HAP) on textured implant, which 
resulted in achieving an stronger resistance towards 
corrosion and confirmed the suitability of this 
surface for biomedical implementations. Moreover, 
researchers created a micro texture on a titanium 
surface through the help of LST and according 
to their outcomes,  the resultant succeeded in 
improving the cell adhesion and displayed an 
excellent performance as a crucial agent in contact 
guidance[118, 119, 145, 146].

CONCLUSIONS
This paper presents the recent advancements 

and progresses induced by the impacts of laser 
nano surface texturing on physical and chemical 
features of dental implants. LST proved to be a 
rapid, clean, and accurate approach for the objective 
of implant modification. Several studies denoted 
the applicability of LST in improving various 
physical and chemical characteristics of dental 
implants, which include chemical composition 
and wettability, surface roughness or topography, 
and anti-bacterial capability and biocompatibility. 
This technique is expected to open new horizons 
towards the improvement of dental implants 
performance in order to enhance the quality of 
peoples lives in the community.
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