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Amphotericin B (AmB) is one of the toxic drugs that with appropriate micelles 
structure for encapsulation can be effectively used in fungal infections and 
leishmaniasis treatments. The present work focuses on the design and 
development of micelles containing amphotericin B to decrease toxicity and 
improve antifungal activity. To this end, AmB was encapsulated in 1, 2-distearoyl-
S-glycero-3-phosphorylcholine (DSPC) based micelles in the sensitive range of 
structural change with different ratios of DSPC and DSPE-PEG2000 (10:1, 9:2, 8:3; 
w/w ) using the solvent evaporation method in methanol/chloroform medium. 
The effect of solvent composition and the combination of different ratios on 
the morphological and structural characteristics of unloaded and drug-loaded 
micelles were investigated by TEM and FESEM analyses. With a ratio of 9:2 w/w, 
spherical shape, and more uniform were successfully synthesized and considered 
as an optimal preferable microstructure for drug loading. Moreover, due to the 
slow release of the micelles system, the maximum drug release within 72 hours 
in the buffer environment is 86.2 %. The DLS analysis reported the mean particle 
size of drug-loaded Micelles as 55.1 nm and unloaded micelles as 51.6 nm. TEM-
based particle size determination of the AmB-loaded sample revealed that the 
mean diameter of the micelles with optimum formulation was 27 ± 0.7 nm and 
for unloaded micelles 24 ± 0.6 nm. Furthermore, the Cytotoxicity of the AmB’s 
micelles was tested using the MTT assay. In addition, S. aureus,  E. coli, and C. 
Albicans strains were employed during the antimicrobial and antifungal tests.
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INTRODUCTION
Amphotericin B (AmB) as a polyethylene 

macrolide antibiotic is widely used to combat 
invasive systemic mycosis and leishmania[1, 2]. Its 
antifungal mechanism of action includes binding 
with the ergosterol on the fungal cell membrane 
while subsequent intracellular cations leakage 
leads to increased cell membrane permeability 
and cell death [3]. AmB has serious dose-
dependent side effects including; nephrotoxicity, 
cardiotoxicity, hepatoxicity, hemolysis, leukopenia, 
thrombocytopenia, poor water solubility, and low 

bioavailability due to its aggregation pattern in 
solution which is originated from its amphiphilic 
structure [4, 5]. The injection of AmB as colloidal 
dispersion in sodium deoxycholate may cause 
adverse side effects because of quick release and 
aggregation while dilution in plasma. Several 
marketed formulations have been developed to 
improve patient tolerability and reduce the toxicity 
of AmB by decreasing its state and extent of 
aggregation, namely lipid or complexes, cholesteryl 
sulfate complexes, and liposomal formulations [6-
9]. Moreover, several strategies are suggested for 
preparing AmB-loaded carrier systems such as 
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nanoprecipitation [10], solvent diffusion method 
[11], Pickering emulsion [12], hydrotrope dilution 
[13], ionic gelation [14], and solvent evaporation 
method [15]. 

Polymeric micelles are submicron bilayer 
vesicles that are used in various medical fields and 
these nanoparticles serve as carriers of drugs and 
biologically active agents such as pharmaceuticals, 
cosmetics, and nutraceutical liposomes [16-20]. 
They are mostly composed of phospholipids as 
amphiphilic molecules with a hydrophilic head 
and hydrophobic tail groups [21, 22]. These newly-
emerged nanostructured materials are the center of 
attention in various applications and nano therapy 
owing to their excellent and unique characteristics 
including biocompatibility, biodegradability, slow 
drug release, and nanosize [23-26]. Polymeric 
micelles are capable of improving the performance 
of bioactive agents by preventing their undesired 
intermolecular interactions, as well as enhancing 
their bioavailability, solubility, and stability (in 
vitro and in vivo) [27]. As another advantage, the 
utilization of micelles in cell-specific targeting 
paves the way for obtaining appropriate drug 
concentrations for optimum therapeutic efficacy 
in the target site with minimum adverse health 
impacts on normal cells and tissues [28-30]. 

Self-arrangement of hydrated phospholipid 
molecules into bilayer nanostructures has not to be 
considered a spontaneous process. In other words, 
from an equilibrium thermodynamics point of view, 
a certain quantity of energy should be supplied to 
the aqueous system in the form of homogenization, 
heating, sonication, etc. [31]. The most common 
micelles preparation techniques are sonication [32], 
extrusion [33], microfluidization [34], and heating 
[35]. The sonication-assisted solvent evaporation 
technique is a cost-effective and straightforward 
method that has attracted significant attention 
due to its potential to provide a smaller mean 
particle size and better dispersity [36, 37]. Among 
phospholipids, Distearoylphosphatidylcholine 
(DSPC), is often used as a major component 
of the formation of micelles and liposomes for 
many practical applications, On the other hand, 
PEGylated lipids such as 1, 2-distearoyl-Sn-
glycero-3-phosphoethanolamine-N-[methoxy 
(polyethylene glycol)-2000] (DSPE-PEG2000), 
show latent properties due to the presence of 
PEG in their structure. It usually prolongs the 
circulation time in the blood by preventing the 
interaction between blood components and 

colloidal nanoparticles. it also prevents adsorption 
by macrophages of the reticuloendothelial system 
(RES) and this improves the biopharmaceutical 
properties of nanoparticles [38-45]. 

Dos Santos et al [46] showed that adding only 
0.5 mol% of PEG2000-DSPE to DSPC liposomes 
significantly increased the plasma circulation 
and that 2 mol% PEG2000-DSPE in liposomes 
completely prevent the aggregation. Some studies 
have used cholesterol to Increase membrane 
flexibility and stability, but since cholesterol is 
required for macrophage internalization and 
parasite survival, For the treatment of leishmaniasis, 
cholesterol-free drug carriers are better compounds 
as vehicles [47].

In recent years, some research has been done on 
the preparation of DSPC and DSPE-PEG liposomal 
structures by combining different percentages and 
investigating different physicochemical properties 
and environmental effects on the formation of these 
structures[39,48,49]. However, the development of 
nanocarriers still faces challenges. The synthesis of 
PEG-DSPE liposomes is somewhat expensive[50], 
along with many benefits such as biocompatibility 
and FDA approval. Minor changes in the percentage 
composition of DSPC and DSPE-PEG2000 
concentrations have significant effects on the shape 
of the micelles, the aggregation, and the drug 
loading percentage[51]. Therefore, it is necessary to 
achieve the accurate design and optimal percentage 
combination for the production of micelles to load 
amphotericin B using two specific lipids by creating 
different concentrations in the range of structural 
change 2 to 10 mol% of DSPE-PEG2000[51]. 

To our knowledge, this is the first study 
of its kind to use for the production of DSPC 
based micelles to achieve an optimal percentage 
composition with the spherical structure, nano-
sized, high drug loading percentage with slow 
drug release for encapsulation of amphotericin B. 
The stability of micelles, particle size distribution, 
and their microstructural properties, as well as the 
cytotoxicity, antimicrobial and antifungal activity 
of AmB, loaded nanoparticles, were investigated.

MATERIALS AND METHODS
Materials

1, 2-Distearoyl-sn-glycero-3-phosphocholine 
(DSPC), 1, 2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[methoxy(polyethylen
eglycol)-2000] (DSPE-PEG2000) were procured 
from Avanti polar (Alabaster, AL, USA). Methanol 
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and chloroform (HPLC grade) were supplied by 
Sigma-Aldrich (St. Louis, MO, USA). AmB was 
obtained from Merck (Darmstadt, Germany). The 
K2HPO4 and KH2PO4 (sodium phosphate buffer 
reagent) were purchased from Merck (Germany). 
The Pasteur Institute Cell Bank prepared the Vero 
cell line. Antimicrobial tests were performed using 
bacterial strains (S. aureus (PTCC1112), E. coli 
(PTCC1399), C. Albicans (PTCC5027)) obtained 
from the Bank of Iranian Research Organization 
for Science and Technology (IROST) All the other 
reagents without further purification were used in 
analytical grade.

Micelles preparation and AmB encapsulation 
Micelles were prepared using ultrasonication 

followed by the solvent evaporation method 
[48] with slight modifications. Three different 
formulations of DSPC and DSPE-PEG were 
provided as 10:1, 9:2, 8:3 ratios (DSPC: DSPE-
PEG2000; w/w) and dissolved in the methanol 
-chloroform mixture (1:3 v/v). The mixtures were 
ultrafiltered to remove solid insoluble components 
and eliminate pyrogens. The filtered solutions 
were transferred to a round-bottom flask and the 
solvents were removed by using a rotary evaporator 
(Heidolph Instruments, Germany) at 65 °C 
under the vacuum, leaving what remained in the 
flask was a thin layer of lipid components.  The 
ratio of  9:2  w/w that had the best result among 
the three compounds was chosen for the drug 
loading. Then, sodium phosphate buffer (pH 7.4), 
as a hydration medium, was added to the flask 
containing the dried lipids simultaneously with 
1mg AmB. A magnetic stirrer was utilized for 5 
minutes to agitate the mixture and disperse the 
dried lipids into the hydration fluid. At this point, 
micrometric structures are formed in the form of 
multilamellar vesicles (MLV). To reduce the size 
of the micelles to nano micelles, a sonication step 
was performed using a probe sonicator. The MLV 
flask was sonicated with an ultrasonic homogenizer 
(UHP-400, Topsonics) for 3 minutes under 
certain amplitude and time conditions, and small, 
unilamellar vesicles (SUV)-type micelles were 
consequently formed.

Characterization of AmB loaded micelles 
Dynamic light scattering (DLS) analysis

 DLS studies of the free and drug-loaded micelles 
using a Zeta A- check (Particle Metrix, Germany) 
equipped with a 532 nm laser at a back-scattering 

angle of 173° at 24 ± 1 °C. The polydispersity 
index (PDI) and the intensity average of the 
hydrodynamic diameter were measured using the 
cumulative analysis of the photon correlation 
function.

Encapsulation Efficiency (EE) and AmB Release 
Study 

Evaluation of AmB release kinetics from 
polymeric micelles was performed using the 
dialysis method in vitro and encapsulated AmB 
was determined as follows. The encapsulation 
efficiency (EE) was obtained by determining the 
unencapsulated amount of amphotericin. For this 
purpose, the sonicated micelles containing 1 mg 
drug were transferred into the dialysis bag (Cut off 
12-14 kDa)  and the contents are incubated for one 
hour in 100 ml PBS buffer until the unencapsulated 
free drug was removed. During the next step, 
the absorption of unencapsulated AmB was 
calculated at a maximum wavelength of 408 nm by 
a spectrophotometer. Finally, using the standard 
diagram of AmB and equation 1, encapsulation 
efficiency was calculated.		

For AmB release kinetics from polymeric 
micelles, Each micelle solution was dialyzed against 
excess PBS buffer (20). The release rate of AmB 
from micelles was determined the by membrane 
diffusion technique. The micellar suspension 
containing 1 mg AmB was poured into the dialysis 
bag (cut kDa 12-14). Then, a 100 ml container 
containing saline phosphate buffer (PH 7.4) was 
used to place the dialysis bag. After placing the 
dialysis bag in the container, Sampling (100 µl) 
was performed from the buffer medium around 
the dialysis bag at 1,3,6,12,18,24,48  and 72 h. 
After each sampling, an equal volume of phosphate 
buffer has been added.

Finally, the AmB calibration equation in the 
PBS (Equation 2) was used to calculate drug release 
concentrations at different times within 72 hours 
and the acquired data were plotted. 

Morphology observations 
 Transmission electron microscopy (PHILIPS 

CM30 NETHERLANDS V = 200KV) was used 
to determine the surface morphology of micelles. 
Before the fixation on the mesh grids, the micellar 
suspension was diluted with deionized water and 
stained. After removing the residual solution, the 
samples were studied at 200 kV.

The morphological characteristics of the 
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synthesized micelles were studied by field-emission 
scanning electron microscopy (FESEM) (TESCAN 
MIRA3, Czech Republic). To prepare SEM samples, 
a droplet of each one of the synthesized micelles 
solutions was cast on the mica sheet and then dried 
at room temperature and mounted on a double-
faced adhesive tape afterward. After gold-plating 
by sputtering, the samples were observed at the 
accelerating voltage of 20 kV.

Cytotoxicity assay of the micelles
Cell culture: Vero cell lines that are resistant 

and sensitive were purchased from Pasteur Institute 
Cell Bank and cultured in the 90% DMEM and 
10% fetal bovine serum medium containing  100 
U/mL penicillin and 100 μg/mL streptomycin at37 
°C and 5% carbon dioxide concentration with the 
humidity of about 80%. The cells were grown until 
80% confluence. Confluent cells were passaged and 
plated at 1:2 or 1:3 dilutions using 0.25% trypsin 
and 1mM Ethylenediaminetetraacetic acid (EDTA) 
(Invitrogen LT, Merelbeke, Belgium) every 3–4 
days. The cells were frozen in  20% serum and 10% 
DMSO (Merck, Darmstadt, Germany) in liquid 
nitrogen. 

MTT assay: Cell suspensions were seeded into 
the 96-well-plate and incubated for 24 h (5- 6×103 
per well). The cells were rested for at least 24 hours, 
which is equivalent to one cell cycle duration of 
selected cells, to achieve exponential growth. The 100 
μL medium was added to each well After removing 
the previous medium, The cells were incubated 
with 10 μL of 5 mg/ml 3-(4, 5- dimethylthiazol-
2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 
which was dissolved in 90 μL of the medium after 
each treatment for 4 h. Tetrazolium yellow salt was 
cleaved by living cells into an insoluble precipitate 
(formazan). The decrease in the percentage 
of living cells is correlated with the amount of 
formazan precipitate crystals. After the supernatant 
was discarded, formazan precipitate was kept and 

DMSO (100 μL ) was added into the wells. The 
absorbance of the specimen was measured at 570 
nm with BioTek [49] microplate reader. The cell 
viability percentage is calculated using Equation 
3 after contact with the samples at different 
concentrations. Compared to the control group, 
cell viability results were shown as a percentage. 
To quantify the sensitivity of selected cell types, 
the half-maximal inhibitory concentration (IC50), 
which is the required concentration of AmB for 
a 50% inhibition of cell growth was measured. At 
least three independent repetitions were carried 
out for all of the experiments. Data were presented 
as mean ± SD (standard deviation). To determine 
the inhibitory concentration (IC50), GraphPad 
Prism 8 graphic fitting method was used to plot the 
values of the dose-response curve[49].

In vitro antifungal activity
Antimicrobial test: Antimicrobial tests 

were performed using bacterial strains of S. 
aureus (PTCC1112), E. coli (PTCC1399), and C. 
Albicans(PTCC5027)) from the Iranian Research 
Organization for Science and Technology 
(IROST). One gram-negative and two gram-
positive strains were selected accordingly. In all 
assays, specific antibiotic standards were used to 
ensure the uniformity of the conditions of all tests 
and a comparative study based on the standards 
recommended by the National Committee for 
Clinical Laboratory Standards (NCCLS, 1997). 
Specific standard antibiotics were used for the 
gram-negative sample of streptomycin, the gram-
positive sample of vancomycin, and the fungal 
sample of the chloramphenicol standard.

Cultivation and preparation of samples
All strains were stored at -70 °C before 

cultivation in a medium containing  11% (v / v) 
dimethyl sulfoxide. The bacterial and fungal strains 
were grown on Müller-Hinton agar and Saburod 

Equation 1

Equation 3

Equation 2
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dextrose agar plates (Merck, Germany) at 28 °C and 
37 °C for fungal and bacterial samples, respectively. 
Single colonies of bacterial samples were cultured 
linearly in culture medium plates and incubated 
for 24 h. After two consecutive inoculations, the 
samples were rejuvenated and prepared for the next 
steps.

The inoculum consists of a suspension of 
microorganisms in the culture medium with about 
106 colony-forming units (CFUs). To prepare the 
cell suspension, pure bacterial colonies were added 
to the 10 ml of Müller-Hinton broth medium, 
and after 30 seconds vortex for 4 h incubated. The 
sample concentration in this period was equal to 
turbidity as half of McFarland’s visually or 0.5-0.6 
in light absorption of 600 nm and pure colonies 
were used to prepare the inoculum (approximately 
1.5 × 106 CFU / ml).

Assay of antimicrobial effect by disk diffusion method
 For this purpose, 100 μl of inoculum of 

bacterial and fungal strains were cultured by grass 
sterilization on plates of sterile Müller Hinton agar 

media. Antibiogram paper disks (6 mm) were 
saturated with 30 μl of the synthesized nanoparticle 
colloids. The resulting discs were tested on strain 
grass plates and 37 ° C was used to keep the plates 
in the incubator. The diameter of the growth auras 
around the discs was determined by a caliber after 
18 h. The standard antibiotic discs vancomycin, 
petomycin ester, and chloramphenicol were also 
used as positive controls.

RESULTS AND DISCUSSION
Morphology

The TEM (Fig. 2) and FE-SEM (Fig. 1( 
micrographs of micelles with different formulations 
are presented. As can be seen, the DSPC based 
micelles with a DSPC: DSPE-PEG ratio of 10:1 are 
synthesized in a disk shape (Fig. 2.d) which is in 
line with the results presented by Markus Johnsson 
et al. For low concentrations of DSPE-PEG[51]. 
Micelles with a ratio of DSPC: DSPE-PEG 9: 2 are 
successfully synthesized in a spherical shape and 
with uniform dispersion compared to the other two 
formulations. Belsito et al. set the onset of micelle 

 

Fig. 1. FE-SEM images of surfaces of  DSPC: DSPE-PEG2000 micelles with ratios of a) 8:3, b) 9:2 

unloaded, c)drug-loaded 9:2, d) 10:1 
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formation in the DSPC: DSPE-PEG formulation 
to 5 mol% which is consistent with the percentage 
composition of this study [52]. The structural 
evolution of DSPC: DSPC- PEG micelles change 
from disc-like micelles to spherical by increasing 
the PEG-lipid content [51]. From the TEM picture 
(Fig. 2. a), it can be seen that in DSPC: DSPE-PEG 
8:3 formulation the size of the micelles decreases 
with increasing PEG-lipid concentration, and 
aggregation occurs(Fig. 1. a). Therefore, the 
authors have chosen DSPC: DSPE-PEG ratio of 
9:2  formulation, and it was considered as the 
optimized formulation from the microstructural 
and morphological point of view. 

According to FESEM and TEM pictures, the 
drug-loaded and unloaded DSPC-PEG spherical 
micelles with DSPC: DSPE-PEG ratio of 9:2 
are formed with a homogeneous dispersion. 
Furthermore, the mean diameter of the synthesized 
micelles can be determined by using microscopy 
images. Accordingly, the mean diameter of the 
micelles with optimum formulation was 24 ± 0.6 
nm. The results show that the AmB-loaded DSPC-
PEG spherical micelles are not morphologically 
different from unloaded ones. It suggests that the 
encapsulation of AmB into the micelles had no 
significant influence on the morphology of the 

drug-loaded micelles. Furthermore, TEM-based 
particle size determination of the AmB-loaded 
sample revealed that the mean diameter of the 
micelles with optimum formulation was 26 ± 0.6 
nm. Thus, it can be concluded that the encapsulation 
of AmB into the DSPC-PEG micelles barely affects 
their morphology and slightly increases their size.

Mean particle size and size distribution of micelles
Particle size and polydispersity index (PDI) 

are among the most influential parameters on 
stability, distribution, and compound release [31, 
53]. According to Fig. 3, the DLS measurements 
demonstrate that the drug-loaded and unloaded 
DSPC-PEG micelles fell within the nanosize range 
which is desirable for most applications. The 
particle size and PDI results are illustrated in Table 
1. It could be concluded that the size of the DSPC: 
DSPC-PEG spherical micelles is slightly increased 
after the incorporation of AmB molecules which 
is in agreement with the literatures [54, 55]. To 
determine whether particles are monodisperse 
or polydisperse, PDI is a good measure to show 
dispersion. PDI values for both AmB-loaded and 
unloaded micelles were lower than 0.2 which 
indicates that the homogeneous suspensions with 
narrow dispersity were obtained [56, 57]. 

 

 

 

 

 

 Fig. 2. TEM images of surfaces of  DSPC: DSPE-PEG2000 micelles with ratios of a) 8:3, b) 9:2 

unloaded, c)drug-loaded 9:2, d) 10:1 

 

  

Fig. 2. TEM images of surfaces of  DSPC: DSPE-PEG2000 micelles with ratios of a) 8:3, b) 9:2 unloaded, c)drug-loaded 9:2, d) 10:1
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 Fig 3. Particle Size Distribution. a) Unloaded sample. b) Drug-loaded sample. 
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Fig. 2. TEM images of surfaces of  DSPC: DSPE-PEG2000 micelles with ratios of a) 8:3, b) 9:2 unloaded, c)drug-loaded 9:2, d) 10:1

 

Table 1. Mean diameter and PDI of micelles.
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On the other hand, as indicated in Table 1, the 
experimental values of the hydrodynamic diameters 
derived from the DLS measurement for both AmB-
loaded and unloaded samples are significantly 
higher than that of the mean diameters measured 
from the TEM micrographs. It could be associated 
with the fact that the PEG is a soluble component 
in DLS medium giving rise to a swollen structure 
with high water content and as expected, greater 
particle size [49, 58]. 

In vitro release of micelles
AmB release from micelles was assessed at room 

temperature (25°C) using a dialysis bag soaked in 
PBS release medium to guarantee sink conditions. 
UV-vis spectroscopy was used to monitor the 
concentration of AmB released into the medium 
at 408 nm. The release profiles were illustrated in 
Fig. 4. The drug encapsulation efficiency is 80.63% 
while confirming the slow release of the micelle 
system. During the 72 hours, AmB is released 
slowly to achieve a cumulative release of nearly 86.2 
% of the loaded drug. After 72 hours, the release 
rate consistently reached its maximum release 
rate. Compared to the release of free amphotericin 
B reported by other authors about 98.7% in the 
first 24 hours, in this study, there was no burst 
release phenomenon from the micelles loaded with 

AmB[59]. In formulations based on nanoparticles, 
sustained release is the most desirable form of 
release, and release can follow a linear graph as 
a function of the square root of time, as in our 
research. The long-term release is critical in chronic 
disease where repeated dosing is not preferred [60].

Cytotoxicity assay of the micelles
Cytotoxicity of AmB-loaded micelles was 

evaluated using Vero cells by MTT assay. Different 
concentrations of free AmB and AmB loaded 
micelles, and unloaded micelles were evaluated 
for cell viability (%) accordingly. While the 
cytotoxicity of AmB was significantly reduced by 
the use of micelles, AmB reduced cell viability in 
a manner commensurate with dose changes. The 
cell viabilities of free AmB were much less than 
those AmB loaded micelles and unloaded micelles. 
It could be observed that the MTT results had no 
significant differences after 24 or 48 h. Both these 
results proved that AmB loaded micelles and 
unloaded micelles were less cytotoxic than free 
AmB.

A comparative study of the IC50 content of AmB 
micelles on the Vero cell line was presented in Table 
2. The IC50 levels were almost slightly different. 
According to Fig. 5, which is in terms of viability for 
concentrations below 50 μg/ml, the first significant 

 

  

 

Fig 4. AmB drug release chart from micelles during 72 h (mean ± SD, n = 3) 
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difference with control occurs at 6.25 μg/ml with 
89.82% viability for AmB loaded micelles, whereas, 
for the free AmB, it starts only at 1.5 μg/ml with 
almost similar viability. cells.  This means that the 
effect of the drug on cell viability in the micelles 
state loaded with AmB is much greater than that of 
the free drug, and the slope of cell destruction for 
the free drug is very steep.

Antifungal and antimicrobial assay
A wide range of research works have been 

performed on the antifungal activity of AmB-
encapsulated nanocarriers and it is concluded that 
the effectiveness of AmB is profoundly increased 
as an antifungal drug [61]. The compounds used 
in the preparation of drug nanoparticles are very 
important and in addition to creating nano-based 
formulations, can be effective in intensifying drug 
activity. In the study of Yien et al., the fungicidal 
effect of Trimethyl chitosan alone on Candida 
albicans at the concentration of 0.2 mg / mL 
had been reported[62]. Also, in another study 
conducted by Palmeira et al., it was suggested 
that tripolyphosphate alone has fungicidal 

properties and its use as a crosslinking agent in the 
nanoformulation composition has an antifungal 
effect similar to the amphotericin B [63]. Therefore, 
the compounds used with the determined 
formulation have a significant role in increasing 
the antifungal effects on the drug nanoparticles in 
this study and can be used as a carrier for fungal 
antibiotics in other studies.

In this work, the effect of different dilutions 
of AmB unloaded and loaded into DSPC-PEG 
micelles on bacterial strains of S. aureus, E. 
coli was investigated using in vitro method. In 
microbial tests related to both S. aureus and 
E. coli strains, Studies have shown that drug 
micelles have antimicrobial effects on the studied 
microbial strains and inhibit their growth. The 
inhibitory effect of drug-containing micelles on 
gram-negative bacteria was less than that of gram-
positive bacteria. Comparison of IZs related to free 
drug and micelles form with control antibiotics 
showed that its antimicrobial effect was less than 
that of antibiotics used.

On the other hand, the antifungal assay was 
performed on C. Albicans. The results of the 
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antifungal assay revealed that the AmB-loaded 
DSPC-PEG micelles remarkably reduce the growth 
of C. Albicans compared to the control sample. 

AmB loaded micelles showed the same high 
antifungal activity as free AmB in biological studies, 
while unloaded micelles had no significant effect. 
In the case of drug-loaded micelles, After 24 and 
48 hours, the inhibition zone grows in a semi-halo, 
which may be explained by the process of drug 
release from the micelles, while the free drug is 
immediately available. In addition, considering that 
the mechanism for AmB activity seems to be related 
to the formation of multimeric drug associations, it 
could be possible that the drug released from the 

...  
 

 

     

       

 

Table 3. Antimicrobial and antifungal effect of compounds in three concentrations. IZ: Inhibition Zone (mm).

micelles is partially in conformation with the target 
interaction. This confirms the fact that the growth 
of C. Albicans biofilms is further inhibited at lower 
doses of AmB-loaded micelles. It may indicate that 
these micelles presented a superior penetration 
ability to pass through the extra-polymeric matrix 
and interact with the membrane of C. Albicans. 
According to the results presented in Table 3, the 
greatest difference in fungal growth inhibition in 
drug nanoparticles and the traditional form was 
observed at a concentration of 50 μg/ml. For a 
concentration of 100 μg/ml of traditional drug, IZ 
is equal to 20 in 48 hours, while for drug-loaded 
micelles the same IZ occurred in 24 hours and at 
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a concentration of 50 μg/ml. There is a significant 
difference between the results in inhibiting and 
suppressing the fungal growth at lower doses. 
These results are consistent with observations made 
by other researchers on the nano-delivery of AmB 
[64, 65].

It seems that the desired result of cytotoxicity 
of micelles containing AmB and at the same time 
strong antifungal and antimicrobial effects is 
related to the presence of molecules of the drug in 
the monomers form in micelles, which shows an 
interesting practical application. The monomeric 
form of the drug is toxic only to fungal cells, while 
self-aggregated AmB is reportedly toxic to both 
fungal and mammalian cells [66]. 

The presence of a detectable susceptibility 
pattern for C. Albicans and the in vitro antifungal 
effect of synthesized nanoparticles in this study 
suggest that the present formulation has increased 
the potency of the drug at lower doses. Finally, this 
study revealed that the prepared nano-drug can be 
used as a promising formulation in the preparation 
of AmB for the treatment of fungal patients, due to 
the precise balance between toxicity and antifungal 
efficacy.

CONCLUSIONS
In this study, DSPC based polymeric micelles 

were prepared using the solvent evaporation 
method in three different concentrations of DSPC 
and DSPE-PEG2000 (10:1, 9:2, 8:3 ratios). The 
effect of solvent composition and the combination 
of different ratios on the morphological and 
structural characteristics of unloaded and AmB 
loaded micelles were investigated by TEM and 
FESEM analyses. The 9:2 ratio of DSPC: DSPE-PEG 
was determined as the optimum concentration 
based on the homogeneous morphology of the 
synthesized micelles. AmB was loaded into the 
micelles with the optimum formulation and 
the TEM, DLS, and UV-vis spectrophotometry 
analyses were carried on. These results confirmed 
that the DSPC based micelles were successfully 
synthesized with uniform dispersion and a mean 
particle size of 26 ± 0.6 nm. The encapsulation of 
AmB into the micelles had no significant influence 
on the morphology of the drug-loaded micelles. 
To evaluate the performance of prepared micelles, 
an MTT assay was used for micellar cytotoxicity. 
antimicrobial tests on bacterial strains of S. aureus, 
E. coli, and antifungal tests on C. Albicans were 
investigated in vitro. Finally, it can be concluded 

that the prepared micelles can be used as a suitable 
structure for AmB delivery with the desired fungal 
and microbial treatment impacts.
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