Current Advancements and Potential Applications of Nanocomposite Hydrogels in Dentistry: A Systematic Review

Sinta Candra Wardani1*, Kezia Venessa Lasmana2, Vena Febiola Pongayouw2, Ardin Nur Jannatin2, Desirre Assyifa Nareswari2,
1 Department of Prosthodontics, Faculty of Dentistry, Brawijaya University, Malang, Indonesia
2 Dentistry Education Program, Faculty of Dentistry, Brawijaya University, Malang, Indonesia

ARTICLE INFO

Article History:
Received 03 May 2023
Accepted 15 Jul 2023
Published 01 Aug 2023

Keywords:
nanocomposite hydrogels
nano materials
dentistry

ABSTRACT

Nanotechnology is applied in many scientific domains because it provides a variety of practical answers to scientific and medical problems. This systematic literature review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) method to analyze nanocomposite hydrogels (NCHGs) in dentistry. Based on the results of a literature review study on 40 articles, NCHGs have the potential for antibacterial agents, tissue engineering, drug delivery systems, dental materials, etc. The present review aims to provide a depth analysis of NCHGs, impart on the recent advancement in the scope of dentistry, and discuss their applications. Understanding of the principles of NCHGs, their strengths and limitations as well as their specific benefits.

INTRODUCTION

Nanotechnology is applied in many scientific domains because it provides a variety of practical answers to scientific and medical problems. Most research in the last few years has focused on nanoparticles. This shows that nanotechnologies and understanding of the characteristics of materials at nanoscales are in high demand. Nanotechnologies operate on dimensions less than 100 nm (1). Because of their nanoscale size, nanoparticles have a high surface area, volume-to-volume ratio, allowing them to absorb large amounts of medication and move fast through the bloodstream (2). Nanotechnology provides increased therapeutic efficacy, a larger specific surface area, more flexibility in surface functionalization, lower toxicity, better passive targeting, responsiveness to stimuli, and improved bioavailability (3).

Nanotechnology has a wide range of uses in dentistry, including preventive dentistry, dental diagnostics, dental materials, conservative and aesthetic dentistry, endodontics, periodontics, implantology, regenerative dentistry, prosthodontics, and nanoproducts (4). Nanotechnology in dentistry has made some advancements. The increased demand for esthetic restorations has led to increased development of products that are the same color as teeth in recent years. Composite nanoparticles are one type of nanotechnology frequently utilized in dentistry. Artificial nanocomposite teeth are more abrasion-resistant and stable than acrylic and composite microfill teeth, according to research. Dental diagnostics may be more effective and of higher quality as a result of nanomedicine. Very few research and therapeutic strategies have been reported in nanotechnology on the diagnosis of dental disorders (5).

The latest breakthroughs in dental materials are biomaterials, nanoparticle drug delivery, scaffolds,
conductive polymers, hydrogels, polymer blends, composites and nanocomposites, nanoceramics, nanofibers, membranes, nanofilms, nanotubes, and nanorods (6). Hydrogel is a three-dimensional network structure made up of hydrophilic polymer chains that are crosslinked physically, chemically, or by polymerization (7). NCHGs are the result of the combination of existing hydrogel components and nanometer-sized fillers, which often results in improved mechanical properties or new capabilities. Recent discoveries have emphasized that this kind of hydrogel shows tremendous potential for utilization in various biomedical and engineering science due to its ease of design and synthesis. The intricate design and analysis of NCHGs, as well as their appropriate application, necessitate the collaboration of mechanics, materials, engineering, and biology. NCHGs have been employed in a wide range of biomedical and engineering science applications, including sensors, actuators, conductors, coatings, medication delivery, wound healing, tissue engineering, and antimicrobials. Many biological applications demand the usage of NCHGs because of their superior mechanical characteristics and dynamic connection with cellular surroundings (8). The purpose of this study is to offer a thorough understanding of current NCHG knowledge, to impart on recent advancements in the field of dentistry, and to explore their applications.

METHOD

This systematic review was written by using electronic search in PubMed, Science Direct, and Google Scholar online library databases. The selection was carried out using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-analyses) method. Search articles using the keywords “nanocomposite”, “hydrogel” and “dentistry”, “periodontal”, “endodontic”, “oral medicine”, “alveolar bone”.

The articles were selected by using the inclusion/exclusion criteria. The inclusion criteria used for the articles in this systematic review were articles written in English, original research studies published between 2019 to 2023, articles that can be...
accessed in full text, and articles that were related to the discussion of NCHG in dentistry. Articles written in languages other than English, articles that were published under 2019, articles that cannot be accessed in full text form, journals from databases that have nothing to do with research discussions, and theses, books, review articles or not original research paper were excluded from this study.

RESULT

The initial search obtained 1045 articles. The inclusion/exclusion criteria were then applied to all of the studies found through literature search. After the selection of the articles, it gains 40 articles that were suitable within the criteria.

DISCUSSION

Potential Applications of NCHGs
Oral and Maxillofacial Surgery

Hydrogels are a promising biomaterial for bone tissue engineering (BTE), ranging from naturally generated materials to synthetically derived materials (9). From the results of the systematic review, there are 26 journal articles (table 1) of various NCHG that have been used in tissue engineering and anesthesia.

Autogenous and allogenic bone grafts are commonly used as first-line therapies for bone. But there are limitations to their usage, including donor-site morbidity, availability, and ethical issues. To overcome these, a variety of biomaterials have been developed for bone therapies, one of them is hydrogel (30). Hydrogels are frequently used as depots for targeted drug delivery and tissue engineering applications because of its biocompatibility, adjustable network property, and significant water content (9). Several studies have shown that hydrogels also can be used as scaffolds (20). Scaffold-hydrogels systems are an interesting approach because they combine the advantages and shortcomings of hydrogel and scaffolds, whereas the low mechanical properties of hydrogels can fail under heavy loads in native bone and harder porous scaffolds do not provide a native-like environment for cells to thrive in. For the purpose of the replication of hard, bone-like tissues, this scaffold-hydrogel system ought to be in the forefront of the research (20)(23). There are many articles that have incorporated various materials into hydrogel which shows increasing superiority and advantage for BTE. One of the most often utilized bio ceramic materials is nHA (13)(15). Pan et al used a composite scaffold of hydrogel/hydroxyapatite (GH) stent for aesthetic alveolar site preservation.
Table 1. NCHGs and its application in oral and maxillofacial surgery.

<table>
<thead>
<tr>
<th>Material</th>
<th>Application</th>
<th>Method</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphene Oxide, Chitosan (CS), β-glycerophosphate (GP) thermosensitive hydrogel</td>
<td>Anesthesia bupivacaine hydrochloride (BH)</td>
<td>In vitro and in vivo</td>
<td>(10)</td>
</tr>
<tr>
<td>Hydrogels, graphene oxide/reduced graphene oxide (GO/rGO), aloe vera gel</td>
<td>Tissue engineering and antibacterial</td>
<td>In vitro and in vivo</td>
<td>(11)</td>
</tr>
<tr>
<td>Chitosan, alginate, hydroxyapatite</td>
<td>Craniofacial bone</td>
<td>In vitro and in vivo</td>
<td>(12)</td>
</tr>
<tr>
<td>Hyaluronic acid (HA), N-Carboxyethyl Chitosan, Aldehyde synthesized, Nano-Hydroxyapatite powder</td>
<td>Bone tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(13)</td>
</tr>
<tr>
<td>Titania/Hydroxyapatite-Promoted Biomimetic Alginate-Chitosan-Gelatin</td>
<td>Bone tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(14)</td>
</tr>
<tr>
<td>Alginate-Gelatine, Hydroxyapatite containing hDPSCs</td>
<td>Bone tissue engineering</td>
<td>In vivo</td>
<td>(15)</td>
</tr>
<tr>
<td>Hyaluronate-polyacrylamide (poly(Hya-AAm)), Carbonated hydroxyapatite (CCaHAp)</td>
<td>Bone tissue engineering</td>
<td>In vitro</td>
<td>(16)</td>
</tr>
<tr>
<td>Hydroxyapatite, laponite, alginate</td>
<td>Bone Augmentation</td>
<td>In vitro and in vivo</td>
<td>(17)</td>
</tr>
<tr>
<td>Dendrimer (G3) -functionalized nanoceria (G3@nCe) and Gelatin Methacryloyl (GelMA)</td>
<td>Bone tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(18)</td>
</tr>
<tr>
<td>Metformin-loaded mesoporous silica nanospheres (MF-MSNs)-laden gelatin methacryloyl (GelMA)</td>
<td>Maxillofacial defect regeneration</td>
<td>In vitro</td>
<td>(19)</td>
</tr>
<tr>
<td>Sodium hyaluronic acid methacryloyl (HAMA) and MXene-incorporated gelatin methacryloyl (GelMA)bioinks</td>
<td>Bone tissue engineering</td>
<td>In vitro</td>
<td>(20)</td>
</tr>
<tr>
<td>Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA)</td>
<td>Bone regeneration</td>
<td>In vitro and in vivo</td>
<td>(21)</td>
</tr>
<tr>
<td>GelMA and bioactive glass (BG)</td>
<td>Bone tissue engineering</td>
<td>In vitro</td>
<td>(22)</td>
</tr>
<tr>
<td>Soft nano silicate phase and a harder mineral-based phase made from BG</td>
<td>Bone tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(23)</td>
</tr>
<tr>
<td>OSA-dopamine-modified gelatin (GelDA) @amorphous calcium phosphate (ACP)/DA/Silver (Ag)</td>
<td>Adhesive bone repair</td>
<td>In vitro</td>
<td>(24)</td>
</tr>
<tr>
<td>Natural-based gelatin and synthetic-based (poly D, L (lactide-co-glycolide)-b- poly (ethylene glycol)-b-poly D, L (lactide-co-glycolide) (PLGA-PEG-PLGA) trilblock copolymer was developed and loaded with transforming growth factor-β1 (TGF-β1)</td>
<td>Cartilage bone tissue engineering</td>
<td>In vitro</td>
<td>(25)</td>
</tr>
<tr>
<td>Magnetic nanoparticles (MNP)s into polyethylene glycol (PEG)</td>
<td>Bone tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(26)</td>
</tr>
<tr>
<td>mRNA-activated hydrogel scaffolds (MAHSs)</td>
<td>Bone tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(27)</td>
</tr>
<tr>
<td>Aldehyde functionalized cellulose nanocrystals (a-CNC) and Platelet lysate (PL)</td>
<td>Hemostasis application</td>
<td>In vitro and in vivo</td>
<td>(28)</td>
</tr>
<tr>
<td>Gelatin, commercial microcrystalline cellulose (MCC), hydrochloride lidocaine, distilled water, buffer phosphate solution.</td>
<td>Anesthesia lidocaine</td>
<td>In vivo</td>
<td>(29)</td>
</tr>
<tr>
<td>Feather keratin-montmorillonite</td>
<td>Bone tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(30)</td>
</tr>
<tr>
<td>Carrageenan hydrogel Dimethylallylglycine</td>
<td>Osteogenesis and angiogenesis</td>
<td>In vivo</td>
<td>(9)</td>
</tr>
<tr>
<td>Methylcellulose (MC), bassorin (Ba), and halloysite nanotubes (HNTs)</td>
<td>Bone specific gene expression</td>
<td>In vitro</td>
<td>(31)</td>
</tr>
<tr>
<td>3D electroconductive multi-walled carbon nanotube/cobalt composites methacryloyl hydrogel (Gel-MA-MWCNTs/Co)</td>
<td>Nerve tissue engineering</td>
<td>In vitro</td>
<td>(32)</td>
</tr>
<tr>
<td>Berberine (Ber)-loaded Cs nanoparticles (NPs), Chitosan (Cs)/Alginate (Alg), and Naringin (Nar)-loaded Cs NPs</td>
<td>Nerve tissue engineering</td>
<td>In vitro and in vivo</td>
<td>(33)</td>
</tr>
</tbody>
</table>
This study showed that nHA can improve collagen fiber strength, promote bone formation, and aid in the deposition of calcium ions (13). Chen et al also used HAp hydrogels scaffold and the results showed that HAp can improve scaffold mechanical properties, cell adhesion, and proliferation capacity (14). Compared to HA, Ghobashy et al analyzed that CCaHAp has more improved osteogenic ability because it closely reflects the chemical composition of apatite (16). Furthermore, there is another way of hydrogels application that was shown by Li et al whereas they developed subperiosteal injectable HAp/Lap/alginate NCHGs to increase bone augmentation (17). Injectable hydrogels method shows great benefit due to their minimal invasive nature and ability to fill irregular-shaped damages. Another study that used injectable hydrogels is Varshosaz et al by using thermosensitive methylcellulose hydrogels containing Ba and HNTs for bone repair (31). Chitosan also has promising properties in BTE but has poor printability limits. To overcome this, Yousefi et al developed chitosan-based hydrogel combined with alginate and hydroxyapatite (12).

Another material that is mentioned in the table is BG. BG is a type of ceramic material that may be manipulated to produce bioactive and biocompatible conditions for BTE (23). Sadeghian et al stated that BG nanoparticles increased in vitro bioactivity, cell proliferation, and ALP activity (22). As mentioned before, hydrogels have poor mechanical properties, a study by Ke et al showed that combining montmorillonite into hydrogels can improve their mechanical characteristics and bioactivity (30).

GO/rGO nanoparticles possess unique structural features, including water dispersibility and interaction with protonated polymers like CS (10). Their robust structure enhances hydrogel properties and antibacterial activity (11). GO/rGO exhibits excellent near-infrared photothermal properties, making it a promising therapeutic approach for wound healing and drug transport (34). Eltahir et al, shows stimuli-responsive hydrogels transform from sols to gels, enabling injectable drug-loaded thermosensitive hydrogels to form drug depots in target tissues by mixing CS and GP (10).

GelMA hydrogels, a naturally derived gelatin-based resemble native bone extracellular matrix (ECM), have good flexibility, controllable characteristics, low-toxicity, biodegradable, and enzymatic disintegration (18)(19). While various GelMA nanocomposites have a great role in BTE, many of them lack ROS scavenging characteristics. Kurian et al offer an innovative approach by developing G3@nCe/GelMA hydrogel that can promote new bone growth in vivo, modulating cellular responses, and upregulated several genes associated with osteogenesis (18). In Xu et al and Lee et al studies, GelMA is also act as a bioink as one of the primary materials used to produce three-dimensional (3D) bioprinting technology to construct BTE scaffolds (21)(20). Another study that used 3D printed technology showed that MAHSs can promote osteoblastic differentiation and cause osteogenesis in vivo due to the presence of miRNAs (27).

There are many studies of NCHG incorporating metal nanoparticles (35). Zhong et al used hydrogel OSA-GelDa@ACP/ DA/Ag3 as an adhesive bone repair (24). TiO2 NPs has been shown to influence the swelling properties, increase the hydrophilicity, mechanical properties and biomineralization ability of composite hydrogels (14). Natural polymers-based hydrogels also show high potential as biomaterials for neural tissue engineering. Ebrahimi et al, reported that hydrogel-based biomaterials using chitosan/alginate containing both Ber- and Nar-loaded Cs NPs induce axon regeneration and extension, remyelination of nerve fiber, and cell adhesion, (33). Study by Liu et al stated that 3D electroconductive multi-walled Gel-MA–MWCNTs/Co are suitable for enhancing the neural differentiation of the Stem Cell Apical Papilla (SCAP) by releasing Co^{2+} indefinitely, greatly increasing HIF-1 and VEGF expression, and boosting angiogenic ability (32). Ghandforoushan et al stated that gelatin/PLGA-PEG-PLGA combination that contains TGF-1 were viable functional choice for in vitro cartilage regeneration (25).

Fillipi et al stated that tissue engineering often fails because of the lack of vascularization. To solve these issues, Fillipi et al generated unique magnetized NCHGs. This study shows that magnetic actuation can stimulate the osteoblastic and vasculogenic potentials of engineered bone tissue grafts, possibly at least in part by mechanically stimulating the function of progenitor cells (26). Another study showed that an injectable carrageenan NCHG containing whitlockite nanoparticles and DMOG have both angiogenic and osteogenic properties (9). Another ability of
NCHG material is for hemostasis application. This is shown by Mendes et al who show an intrinsically bioactive hemostatic cryogel based on PL-CNC as a source of signaling biological components and as a hemostatic biomaterial (28). The other material, namely Graphene oxide, also takes part as a hemostatic biomaterial (36).

Dental treatments often require multiple doses of local anesthesia, leading to pain and discomfort. Gelatin and cellulose biopolymers have been studied for biomedical applications. A thawing-freezing approach was used to create gelatin-based hydrogels with gum Arabic as a crosslinking agent. The integration of cellulose nanowhiskers (NC) was investigated to control hydrogel solubility, swelling properties, and loading anesthetic medicines. The hydrogels loaded with lidocaine (LID) could be used as raw materials for buccal patches to reduce the use of injectable anesthetics during dental treatments (29).

The studies on NCHG in BTE shown in Table 1 have good compatibility with tissue and cells, osteoconductive activity, and osteoinductive activity. However, the majority of the study on hydrogels in BTE is still in the experimental stage, but there is great potential that these materials may be used in clinical treatment in the future with further research and development.

Periodontics

Current research explains a novel multifunctional NCHG, which can reduce and treat inflammation in the periodontal tissues. Research by Dong et al, Li et al, and Bako et al explained that NCHG can remove biofilm plaques that cause inflammation thereby helping bone regeneration and treating periodontal inflammation (37)(38)(39). He, et al, study used NCHG as a barrier membrane which has advantages in osteoconductivity and antibacterial properties, showing its potential for periodontal tissue engineering (40).

As a result of E-Au@H’s strong photothermal capability, by suppressing bacteria, decreasing inflammation in periodontal tissues by local heating, and encouraging the discharge of EGCG, E-Au@H under NIR irradiation stimulates alveolar bone repair (37). DZIF hydrogels can reduce the production of inflammatory factors in cells and shield BMSCs from an inflammatory microenvironment. The healing of alveolar bone defects has also been observed to be moderately aided by GelMA and PPE. Due to the combination of its antibacterial and anti-inflammatory factors, the NCHGs are promised to be useful for resolving complex periodontal disorders (38). NCHGs prepared by photopolymerizable MPGα and PGA-MNP represent an alternative route of administration for drugs used for dental treatment. Periodontal inflammation caused by bacterial colonies can be opposed with the use of biocompatible and biodegradable materials and their pH-dependent release properties along with short-term blue light activation (39). The barrier membrane exhibits improved biocompatibility and enhanced mechanical qualities with the addition of a higher dose of CHA. The osteoconductivity and antibacterial qualities of the membrane were established in vitro and in vivo by He et al in 2021.
Overall, the research on NCHGs suggests that they have promising potential in treating periodontal inflammation and promoting bone regeneration. Further studies are needed to explore their efficacy and safety in clinical settings.

Oral Medicine

The four experiments have the same goal in the use of NCHG as a drug delivery system in the treatment of malignant cases. Shafiee et al and Verma et al considering the pH conditions (41) (42). Wu et al in the manufacture of NCHG-based materials has not reached the in vitro and in vivo stages so further research is needed (43). According to research by Huang et al, PBFA hydrogel + NIR could suppress the growth of the tumor (44).

The results show of potential Fe3O4@APTES/CS/TG nanocomposite system as a drug carrier with good controlled-release in pH and temperature sensitive environments. Shafiee, et al. 2019 observed that only the nanocomposite showed better release at higher temperatures and at lower pH. It is known that many pathological activities, such as inflammation or tumor experiences a local increase in temperature (by 2–5 °C) or a decrease in pH (1–2.5 pH units), as a result, it can be used to achieve better targeting and treatment (41). The unique feature of nTG-LC nano gels containing TP can be used as reference material in drug delivery systems, especially anti-cancer therapy (42). The sol–gel approach can take advantage of lower temperatures and offer well-defined particles that open new pathways to synthesize functional biocompatible glasses that can be used in self organizing injectable hydrogel applications with well-controlled properties (43).

Table 3. NCHGs and its application in Oral Medicine

<table>
<thead>
<tr>
<th>Material</th>
<th>Application</th>
<th>Methods</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe3O4 magnetic nanoparticles (MNP) containing (3-amino propyl) triethoxy silane (APTES) coated with Chitosan (CS) & Tragacanth Gum (TG) to encapsulate curcumin.</td>
<td>Drug delivery of Chemotherapeutic drugs</td>
<td>In vitro</td>
<td>(41)</td>
</tr>
<tr>
<td>Tragacanth Gum (TG)-lecithin (LC) nano gels with cisplatin (CP) loading</td>
<td>Drug delivery for anti-cancer</td>
<td>Not stated</td>
<td>(42)</td>
</tr>
<tr>
<td>Nano glass powder-Injectable hydrogel</td>
<td>Drug delivery for anti-malignant tumor</td>
<td>Not stated</td>
<td>(43)</td>
</tr>
<tr>
<td>BGN & BGN-Fe BGN, BGN-Fe-Ag2S (BFA), PBFA</td>
<td>Inhibit tumor proliferation & overcome tissue bacterial infection</td>
<td>In vitro and in vivo</td>
<td>(44)</td>
</tr>
</tbody>
</table>

Table 4. NCHGs and its applications in endodontics.

<table>
<thead>
<tr>
<th>Material</th>
<th>Application</th>
<th>Methods</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron (B) modified bioactive glass nanoparticles (BG-NPs) made of cellulose acetate/oxidized pullulan/gelatin (CA/ox-PULL/GEL) three-dimensional scaffolds with tubular morphology</td>
<td>Dentin regeneration</td>
<td>In vitro</td>
<td>(45)</td>
</tr>
<tr>
<td>Human endometrial stem cells (EnSCs) & titanium oxide nanoparticles (TiO2 NPs)</td>
<td>Dentin regeneration, dental pulp repair</td>
<td>In vivo</td>
<td>(46)</td>
</tr>
<tr>
<td>Clindamycin (CLIN)–loaded Poly (D,L) Lactic Acid (PLA) nanoparticles (NPs)</td>
<td>Dentin-pulp reconstruction/regeneration</td>
<td>In vitro</td>
<td>(47)</td>
</tr>
<tr>
<td>Dentin extracellular matrix, GelMA, BG</td>
<td>Pulp regeneration</td>
<td>In vitro</td>
<td>(48)</td>
</tr>
</tbody>
</table>
Table 5. Antimicrobial effects of NCHGs

<table>
<thead>
<tr>
<th>Material</th>
<th>Type of Antimicrobial Test</th>
<th>Types of Microorganisms that were Tested</th>
<th>Result</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermosensitive hydrogel loaded with biosynthesized silver nanoparticles using Eucalyptus camaldulensis leaf extract (bio-AgNPs)</td>
<td>Broth dilution method following Clinical and Laboratory Standards Institute guidelines. Antibiofilm assay by crystal violet assay followed by with confocal laser scanning microscopy.</td>
<td>Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis), Gram negative bacteria (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa), Fungi (Candida albicans), Biofilm (Candida albicans, A. baumannii, E.coli, K. pneumonia, P. aeruginosa)</td>
<td>The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of Gram-positive and Gram-negative bacteria values ranged from 1.09 to 17.5 g/mL and 2.19->35 g/mL, respectively. The MIC and minimum fungicidal concentration of Candida albicans values of 4.38 and 8.75 g/mL, respectively. The proportion of biofilm inhibition in pathogens such as Candida albicans, A. baumannii, E. coli, P. aeruginosa at ½ MIC was as high as 83%. However, biofilm formation in methicillin-resistant S. aureus and S. epidermidis was not suppressed by the hydrogel formulation at 1/8MIC, and biofilm formation in P. aeruginosa was identified following treatment with 1/8MIC and 1/4MIC values. The CLSM showed that after 24 hours of exposure to the hydrogel formulation at 1/2MIC, the biofilm biomass fell considerably while cell death remained unaltered.</td>
<td>(35)</td>
</tr>
<tr>
<td>Amorphous Calcium Phosphate-Dopamine Modified gelatin-AgNP composite hydrogel</td>
<td>Agar plate method using LB in vitro and the bacteriostatic ring and the bacterial growth inhibition zone were evaluated.</td>
<td>E. coli and S. aureus</td>
<td>The diameter of the bacteriostatic ring grows as the ACP/DA/Ag3 particle load increases, and in comparison, there is no bacteriostatic ring around the hydrogel without ACP/DA/Ag3 particles. The diameter of the bacteriostatic ring was not specified by the authors.</td>
<td>(24)</td>
</tr>
<tr>
<td>NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel</td>
<td>Agar plate method using LB in vitro and the bacteria colony were counted, each group was repeated 3 times. Scanning electron microscopy was used to examine the bacteria's morphology. S. aureus biofilm model was used to evaluate the anti-biofilm ability, the biofilm was stained with crystalline violet, and the absorbance was measured at 590 nm using a microplate reader.</td>
<td>E. coli, S. aureus, & S. aureus biofilm</td>
<td>The NIR light increased the antibacterial efficacy of the composites, with 92% and 94% antibacterial rates against E. coli and S. aureus, respectively. The E-Au@H + NIR group reduced S. aureus biofilm more than the other treatment groups.</td>
<td>(37)</td>
</tr>
<tr>
<td>Light-activated injectable hydrogel based on bioactive Ag2S nanodots conjugated Fe-doped bioactive glass nanoparticles (BGN-Fe-Ag2S) into biodegradable PEGDA and AIPH solution</td>
<td>Agar plate method using LB in vitro and the antibacterial performance was evaluated using turbidity and plate colony-counting techniques, followed by SEM analysis. Adult ICR female mice were used to evaluate in vivo healing of MRSA-infected lesions.</td>
<td>Drug-resistant Staphylococcus aureus</td>
<td>The PBFA + NIR and PA + NIR treated groups showed a great sterilizing effect, and the mice in these groups had hardly any bacterial contamination. PBFA hydrogel and NIR co-treatment effectively killed bacteria in bacteria-infected wounds.</td>
<td>(44)</td>
</tr>
</tbody>
</table>
Continued Table 5. Antimicrobial effects of NCHGs

<table>
<thead>
<tr>
<th>Material</th>
<th>Type of Antimicrobial Test</th>
<th>Types of Microorganisms that were Tested</th>
<th>Result</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCHG using Graphene Oxide/reduced Graphene Oxide nano particle-based aloe vera</td>
<td>Agar Well diffusion antibiotic sensitivity assay and the antibacterial measured using zone of inhibition (mm)</td>
<td>P. aeruginosa, Bacillus subtilis, S. aureus, & E. coli</td>
<td>Aloe vera gel + rGO has the largest zone of inhibition of P. aeruginosa (15.75 mm), E. coli (13.27 mm). Hydrogel alone has the highest zone of inhibition B. subtilis (10.01 mm), S. aureus (12.56 mm). rGO conjugated in aloe vera gel showed a greater activity followed by rGO in hydrogel.</td>
<td>(11)</td>
</tr>
<tr>
<td>Injectable NCHG by incorporating dexamethasone-loaded zeolitic imidazole frameworks-8 (DZIF) nanoparticles into the photocrosslinking matrix of methacrylic poly-phosphoester (PPEMA) and methacrylic gelatin (GelMA)</td>
<td>In vitro antibacterial capacity evaluation using BHI agar plates. Biofilm disruption quantity by the crystal violet method. Live/dead bacteria analysis. Visualization of biofilm formation using SEM</td>
<td>S. mutans & P. gingivalis</td>
<td>The zones of inhibition in two sets of nano-composite hydrogels were 2.1±0.2 mm (ZIF@PGel) and 1.8 ±0.2 mm, respectively. The antibacterial activity of hydrogels containing nanoparticles was superior to that of a single PGel hydrogel.</td>
<td>(38)</td>
</tr>
<tr>
<td>Fibrin hydrogel incorporating clindamycin (CLIN)-loaded Poly (D,L) Lactic Acid (PLA) nanoparticles (NPs)</td>
<td>Broth microdilution method using BHI agar plates. MBC<sub>50</sub> and MBC<sub>90</sub> were estimated by measuring E. faecalis biofilm density after crystal violet staining.</td>
<td>E. faecalis</td>
<td>The results of the agar diffusion experiment amply shown that the hydrogel-incorporated CLIN-PLA-NPs effectively suppressed E. faecalis growth in a manner comparable to that of free CLIN at a concentration of 50 mgmL<sup>-1</sup>. The MBC<sub>50</sub> for E. faecalis biofilm was found to be 4 mgmL<sup>-1</sup> for CLIN-PLA-NPs and free CLIN. The MBC<sub>90</sub> was found to be 16 mgmL<sup>-1</sup> for CLIN-PLA-NPs and free CLIN, whereas PLA-NPs did not affect the biofilm.</td>
<td>(47)</td>
</tr>
<tr>
<td>Asymmetric Barrier Membranes Based on Polysaccharide using carbonated hydroxyapatite (CHA)-agarose-ε-poly-lysine (ε-PLL) Micro-NCHG</td>
<td>In vitro antibacterial assay using trypticase soy broth (TSB) and Luria-Bertani (LB) medium, followed by evaluating the optical density and inhibition zone. In vivo using rat subcutaneous infection model.</td>
<td>E. coli & S. aureus</td>
<td>All barrier membranes containing -PLL had effective and enduring antibacterial activities against S. aureus and E. coli. In the APC-10 groups, the number of S. aureus colonies was significantly lower (P < 0.001) than in the control group.</td>
<td>(40)</td>
</tr>
<tr>
<td>AgNP/Alginate NCHG</td>
<td>Antibacterial assay using trypticase soy broth, following with evaluation of minimum bactericidal concentration (MBC). Biofilm susceptibility assays, following by SEM and CLSM techniques.</td>
<td>E. coli, S. aureus, P. aeruginosa, S. mutans, S. mitis, E. faecalis, & S. gordonii</td>
<td>MBC of AgNP was found 25 g g<sup>-1</sup> and a time-dependent death kinetic was discovered during a 180-minute period. On biofilms of Gram positive and negative bacteria, the AgNP alginate gel demonstrated considerable cell death, with the lowest level of killing being 64% for S. aureus and the greatest being 61% for E. coli.</td>
<td>(50)</td>
</tr>
<tr>
<td>AgNP/PEG-Based Hybrid Nanocomposite Hydrogels</td>
<td>Disk diffusion method using McFarland standard suspensions on the Muller-Hinton agar plates.</td>
<td>E. coli & S. aureus</td>
<td>On solid medium, bacteria were contacted with all hybrid hydrogel samples (100 mg, 5 mm in diameter). While all of the produced nanocomposites exhibit reasonable antibacterial effects on S. aureus and E. coli (range from 10 to 18 mm), they are all less effective than the control drug gentamicin (21 and 22 mm, respectively).</td>
<td>(51)</td>
</tr>
</tbody>
</table>
Material Type of Antimicrobial Test Types of Microorganisms that were Tested Result Ref

broth, following with evaluation of minimum bactericidal concentration (MBC) - - P. aeruginosa, Strep. discovered during a 180-minute period. On biofilms of Gram positive and negative bacteria, the AgNP alginate gel demonstrated considerable cell death, with the lowest level of killing being 44% for S. aureus and the greatest being 61% for E. coli.

AgNP/PEG-Based Hybrid Nanocomposite Hydrogels Disk diffusion method using McFarland standard suspensions on the Muller-Hinton agar plates. - - E. coli, S. aureus On solid medium, bacteria were contacted with all hybrid hydrogel samples (100 mg, 5 mm in diameter). While all of the produced nanocomposites exhibit reasonable antibacterial effects on S. aureus and E. coli (range from 10 to 18 mm), they are all less effective than the control drug gentamicin (21 and 22 mm, respectively).

Endodontics

Rad et al and Hoveizi et al, studies demonstrated the involvement of a novel multifunctional NCHG both in scaffold form and its utility for dentin regeneration. The porosity of NCHG can create excellent mechanical strength required during endodontic treatment (45)(46). Beckhouche et al is also constructing a fibrin hydrogel nanocomposite scaffold equipped with CLIN-loaded PLA-NPs to provide the needed aseptic environment for DP regeneration. The hydrogels are still in process of specifying the proportion of NPs that accumulate along the dentin wall and permeate into the micrometer-sized dentinal tubules (47). One of the important features of hydrogels in tissue engineering compared to prefabricated scaffolds is their gelation ability with sufficient vigor at the expected location. This advantage was used by Sadeghian et al in his research to obtain the result that the characterization of the novel Gel-BG/ dECM hydrogel has good mechanical performance and is useful in future dentin pulp regeneration (48). These studies highlight the potential of novel scaffolds and hydrogels for dentin regeneration, which could have significant implications for endodontic treatment and dental health. Further research is needed to fully understand the properties and potential applications of these materials.

Antimicrobial

Composite hydrogels can be made as antimicrobial agents. Composite hydrogels have the ability to covalently or physically bind a variety of antimicrobial compounds, including antibiotics, antimicrobial peptides, biological components, polysaccharides, AMPs, and nanoparticles (NPs). Composite hydrogel can resolve the problems generated by standard drug administration due to toxicity, repeated administration, or high dosage(49). In the last 5 years, many researchers have created new NCHG materials that have good antimicrobial effects. The following is an overview of several types of NCHG that exhibit antimicrobial actions against some microorganisms based on the findings of the systematic review.

As shown in Table 5, NCHGs show antimicrobial efficacy against certain Gram-negative and Gram-positive bacteria, fungi, and biofilms. There are many NCHGs incorporating silver nanoparticles to gain the antibacterial effect. Silver nanoparticles (AgNPs) are broad-spectrum antibacterial agents that may hold promise as antibiofilm agents (35). In this review, we found ten articles using AgNP in their NCHG for antimicrobial agents. We also
found two articles using herbal ingredients in the NCHGs, which are epigallocatechin gallate (EGCG) from green tea leaf extract combined with gold nanoparticles and aloe vera gel combined with graphene oxide/reduced graphene oxide (37) (11). There are two journals that use manufactured drugs to be incorporated into NCHG materials: fibrin hydrogel incorporating clindamycin-loaded Poly Lactic Acid nanoparticles for human dental pulp engineering and dexamethasone-loaded zeolitic imidazolate frameworks in the NCHG for periodontitis treatment (38)(47). There is also one journal that used polysaccharide-based asymmetric barrier membrane employing a carbonated hydroxyapatite-agarose-e-poly-lysine hydrogel micro-nanocomposite, which has antibacterial and osteoconductive properties (40).

Table 5 reveals that the NCHG materials have a relatively excellent antibacterial effect. NCHG materials research is currently limited to in vivo and in vitro studies. NCHG materials must be further developed to the clinical research stage before they can be used in clinical dentistry practice. Not all studies focused on evaluating oral bacteria; more research on the antimicrobial impact of oral microbes is required if the NCHGs are applied in dental practice.

CONCLUSION

NCHG in dentistry has been applied in the field of oral and maxillofacial surgery, periodontics, endodontics, and oral medicine. NCHG can be applied in bone and neural tissue engineering. Various NCHGs have demonstrated remarkable osteogenic activity, and some of them also showed significant angiogenic activity. NCHGs are a prospective property in BTE because of these characteristics. On the other hand, NCHG is also proven to enhance anesthetics properties. In the field of periodontics, NCHG is used as a treatment for periodontitis and reduces periodontal inflammation. In some malignant situations, NCHG is also thought to be useful for medication delivery as an excellent controlled-release drug carrier. In endodontic therapy, NCHG helps dentin-pulp regeneration because it has the advantage of mechanical performance. NCHG possesses strong antibacterial properties against both gram-positive and gram-negative bacteria, biofilms, and fungi. Moreover, with the increasing interest in NCHG, we believe that a noteworthy strategy in future research, regulation, and standardization of novel NCHGs must be developed in the field of dentistry.

ACKNOWLEDGEMENT

None

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

REFERENCES

27. Ebrahimi HM, Samadian H, Davani ST, Kolarjani NR, Mogharabian N, Salami MS, et al. Peripheral nerve regeneration in rats by chitosan/alginate hydrogel com-

36. Borges-Vilches J, Figueroa T, Guajardo S, Carmona S, Mel-

gered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration. Mater Des. 2023 Jan 1;251.

hethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-in-

bined Release of Antiseptic and Antibiotic Drugs from Visible Light Polymerized Biodegradable Nanocompos-

charide micro-nanocomposite hydrogel: Synthesis, characterization, and their antibacterial and osteo-

41. Shafee S, Ahangar HA, Saffar A. Taguchi method optimization for synthesis of Fe3O4 @chitosan/
Tragacanth Gum nanocomposite as a drug deliver-

43. Wu B, Bascu EI, Brady SA, Brougham DF, Clarkin OM. Fine property-tuning through Ca content control in a facile synthesis of glasses-based self-set-
ting injectable hydrogel. Mater Des. 2021 Dec 1;221.

gistic photothermal-chemodynamic tumor and anti-
infection therapy. Biomaterials. 2022 Jan;280.

45. Moonesi Rad R, Atila A, Akgun EE, Evis Z, Keskin D, Tezcan-
er A. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regener-
https://doi.org/10.1016/j.msec.2019.03.022.

46. Hoveizi E, Naddaf H, Ahmadianfar S, Gutmann JL. En-

48. Sadeghian A, Kharaziya M, Khoroushi M. Dentin extracellular matrix loaded bioactive glass/GeMA sup-
port rapid bone mineralization for potential pulp re-

49. Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. In-

51. Kazeminava F, Arsalani N, Ahmadi R, Kafli HS, Geckeler KE. A facile approach to incorporate silver nanoparticles into solvent-free synthesized PEG-based hydrogels for antibacte-
rial and catalytic applications. Polym Test. 2021 Sep 1;101.