Anand Keshari; Gaurav Pal; Samiksha Saxena; Ragini Srivastava; Vishal Srivashtav
Abstract
The study aims at synthesizing silver nanoparticles using leaf extract of Cymbopogon citratus along with the evaluation of its antioxidant, free radicals scavenging, and reducing power properties. Biosynthesized silver nanoparticles were characterized X-Ray diffractometry, Scanning Electron Microscopy, ...
Read More
The study aims at synthesizing silver nanoparticles using leaf extract of Cymbopogon citratus along with the evaluation of its antioxidant, free radicals scavenging, and reducing power properties. Biosynthesized silver nanoparticles were characterized X-Ray diffractometry, Scanning Electron Microscopy, Transmission Electron Microscopy, Fourier Transform Infrared spectroscopy and Energy Dispersive X-ray spectroscopy. The antioxidant, free radicals and reducing power activity were determined by 2, 2-diphenyl-1-picrylhydrazyl, hydrogen peroxide scavenging, hydroxyl radicals scavenging, superoxide scavenging and reducing power activity methods. The silver nanoparticles were synthesized by Cymbopogon citratus extract that was confirmed by visible color changes of solution and spectral analysis. The biosynthesized silver nanoparticles having a surface plasmon resonance band centered at 450 nm were characterized using different techniques. The data obtained from SEM and TEM revealed the formation of spherical shape nanoparticles with size ranging from 5-35 nm in diameter while XRD suggested highly crystalline nanoparticles having Bragg’s peak at (111), (200) and (220) plane. FTIR confirmed the presence of various function groups in the extract and on the surface silver nanoparticles. The biosynthesized silver nanoparticles had greater antioxidant, free radicals scavenging and reducing power activity than Cymbopogon citratus extract while lesser activity than vitamin C.
Anand Keshari; Ragini Srivastava; Sudarshan Yadav; Gopal Nath; Surendra Gond
Abstract
ObjectiveThe present work represents the green synthesis of silver nanoparticles using Withania coagulans extract and its antibacterial property. The synergy, additive, bacteriostatic and bactericidal effect of silver nanoparticles was determined against Enterococcus faecalis, Staphylococcus aureus, ...
Read More
ObjectiveThe present work represents the green synthesis of silver nanoparticles using Withania coagulans extract and its antibacterial property. The synergy, additive, bacteriostatic and bactericidal effect of silver nanoparticles was determined against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Salmonella typhi, and Vibrio cholerae. Methods The green silver nanoparticles were characterized by X-ray diffractometry, Transmission Electron Microscopy, Scanning Electron Microscopy and Fourier Transform Infra Red spectroscopy. The Agar dilution, Minimum Inhibitory Concentration and Bacterial Growth Inhibition methods were used for the determination of the antibacterial activity of silver nanoparticles. The Fractional Inhibitory Concentration Index method was performed to check the synergistic activity of conjugated silver nanoparticles. ResultsThe Withania coagulans extract were reduced the silver nitrate into silver nanoparticles which was confirmed by color changes and spectral analysis. The silver nanoparticles were crystalline, elemental and spherical. The antibacterial activity was reported in silver nanoparticles which confirmed by zone of inhibition and pores on the surface of bacteria. The conjugated silver nanoparticles with Levofloxacin have synergy and additive behavior against the tested bacteria. Furthermore, bacteriostatic and bactericidal nature of silver nanoparticles was reported in lower (50 µg/ml) respectively. Conclusion The phenolic compounds of W. coagulans was responsible for the formation of silver nanoparticles. The bacteriostatic and bacteriocidal activity of silver nanoparticles depends upon its concentration. The conjugation of silver nanoparticles with antibiotics may be beneficial due to its synergy and additive effect against the bacteria.