nanomedicine
Mohsen Abedi Ostad; Roghaye Arezuman; Fatemeh Oroojalian; Ali Hanafi; Amir Amani
Abstract
Particle size is an important parameter in determining quality of drug delivery systems. Electrospray is a novel and interesting approach to prepare polymeric nanoparticles. In this study, effect of four independent parameters on size of nanoparticles, prepared via electrospray, was investigated using ...
Read More
Particle size is an important parameter in determining quality of drug delivery systems. Electrospray is a novel and interesting approach to prepare polymeric nanoparticles. In this study, effect of four independent parameters on size of nanoparticles, prepared via electrospray, was investigated using artificial neural networks (ANNs). The parameters included concentration of polymer, applied voltage, humidity and temperature, of which, the last two were investigated for the first time in this study.The developed ANNs model showed that there is a complex and non-linear relation between the four input parameters and the size of prepared nanoparticles. The model also showed that applied voltage and temperature had small and reverse effects on the size. However, the dominant factors determining the size of the nanoparticles were humidity and polymer concentration: an optimum value was required for obtaining the smallest size. The values above or lower the optimum value made the particle size of generated nanoparticles larger.
Zahra Nasrollahi; Samira Khani; Amir Amani
Abstract
Size of nanoparticles is an important parameter in determining many of their properties. In this work, nanoparticles of β-1,3-glucan containing doxorubicin (Dox) in conjugated and unconjugated forms (Con-Dox-Glu and Un-Dox-Glu, respectively) were prepared. Then, artificial neural networks (ANNs) ...
Read More
Size of nanoparticles is an important parameter in determining many of their properties. In this work, nanoparticles of β-1,3-glucan containing doxorubicin (Dox) in conjugated and unconjugated forms (Con-Dox-Glu and Un-Dox-Glu, respectively) were prepared. Then, artificial neural networks (ANNs) were used to find the effect of different formulation/processing parameters on their particle size, which was measured using dynamic light scattering (DLS). The parameters included ratio of Dox/Carrier as well as concentrations of polyethyleneimine (PEI), NaOH and succinic anhydride (Sa). To do so, fifty samples having different values of the four parameters were prepared and their particle size was measured. The data were divided randomly into training, test and unseen data. The ANN model demonstrated that in both conjugated and unconjugated forms, Dox/Carrier ratio is the dominant factor determining the particle size. Also, concentration of PEI showed to be important in determining particle size of unconjugated form of the nanoparticles. The remaining parameters indicated no considerable effect on the particle size
Pegah Haghighi; Solmaz Ghaffari; Sepideh Arbabi Bidgoli; Mahnaz Qomi; Setareh Haghighat
Abstract
Objective(s): In this work, Ginkgo biloba extract (GBE) loaded solid lipid nanoparticles (SLNs) were synthesized via high pressure homogenization method and their physicochemical properties, as well as cytotoxicity and antibacterial activities were evaluated.Methods: Ginkgo biloba extract SLNs (GBE-SLNs) ...
Read More
Objective(s): In this work, Ginkgo biloba extract (GBE) loaded solid lipid nanoparticles (SLNs) were synthesized via high pressure homogenization method and their physicochemical properties, as well as cytotoxicity and antibacterial activities were evaluated.Methods: Ginkgo biloba extract SLNs (GBE-SLNs) were prepared using high pressure homogenization method. The morphology and size of SLNs were evaluated by scanning electron microscopy (SEM) and dynamic light scattering (DLS) techniques. The drug release of SLNs was also investigated using synthetic dialysis membrane. The antibacterial activity of nanoparticles was tested against both gram negative and gram positive bacteria strains. The probability of having toxicity of SLNs was studied on the rabbits.Results: The spherical structure of GBE-SLNs was confirmed by SEM images. The mean particle size of the obtained SLNs was ranging from 104 to 621 nm for different formulations using DLS technique. An in-vitro study of synthesized SLNs illustrated that the percentage of ginkgo biloba released from the solid lipid nanoparticles was 85% of loaded GBE after 72 hours. There was no report of significant skin toxicity via in-vivo studies.Conclusions: According to the above results, SLNs loaded with ginkgo extract showed acceptable particle size and shape, suitable loading of active substance and sustained release profile as well as appropriate antimicrobial effects without any significant skin toxicity.