Pancreas recovery in diabetic rats after low dose curcumin@ZnO nanoparticles oral treatment

Document Type : Original Research Article

Authors

1 National Institute of Laser Enhanced Sciences (NILES), Department of laser applications in Metrology, photochemistry, and agriculture, Cairo University, 12613, Giza, Egypt

2 Biological Applications Department, Egyptian Atomic Energy Authority, Cairo, Egypt

3 Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt

Abstract

The purpose of this study was to explore the pancreas recovery in diabetic rats after treatment with the synthesized, curcumin@zinc oxide nanocomposite (CUR@ZnO NPs). Type 2 diabetes mellitus (T2DM) rats received low-dose treatments with Cur@ZnO NPs (1 mg/kg) for 4 weeks. The results indicated that CUR@ZnO NPs administration completely recovered T2DM rat’s pancreas. Similarly, CUR@ZnO NPs were exceptional in improving the lipid profile of diabetic rats. The immunohistochemical investigation confirmed these results and revealed a complete recovery of pancreas and insulin production all over the pancreatic islets of the CUR@ZnO NPs group than in all other groups.  Moreover, lesion scores in the pancreas and liver of T2DM rats given CUR@ZnO NPs showed a prodigious amelioration than the other groups. The previous results confirmed each other and indicate the success of CUR@ZnO NPs administration at low doses in the restoration of pancreas and insulin production in T2DM rats. The obtained results could help and guide the dose of CUR@ZnO NPs required as a novel drug for T2DM pancreas recovery.           

Keywords

Main Subjects


1 R. A. Mohamed, O. Galal, A. R. Mohammed, and H. S. El-Abhar, Tropisetron modulates peripheral and central serotonin/insulin levels via insulin and nuclear factor kappa B/receptor for advanced glycation end products signalling to regulate type-2 diabetes in rats, RSC advances, vol. 8, pp. 11908-11920, 2018. https://doi.org/10.1039/C7RA13105D 
2 Y. Lin and Z. Sun, Current views on type 2 diabetes, The Journal of endocrinology, vol. 204, p. 1, 2010. https://doi.org/10.1677/JOE-09-0260   
3 M. A. Kamal, M. H. Khairy, N. A. ELSadek, and M. Hussein, Therapeutic efficacy of zinc oxide nanoparticles in diabetic rats, Slovenian Veterinary Research, vol. 56, 2019. https://doi.org/10.26873/SVR-756-2019   
4 K. H. Thompson, J. Lichter, C. LeBel, M. C. Scaife, J. H. McNeill, and C. Orvig, Vanadium treatment of type 2 diabetes: a view to the future, Journal of inorganic biochemistry, vol. 103, pp. 554-558, 2009. https://doi.org/10.1016/j.jinorgbio.2008.12.003   
5 Z. Q. Wang and W. T. Cefalu, Current concepts about chromium supplementation in type 2 diabetes and insulin resistance, Current diabetes reports, vol. 10, pp. 145-151, 2010. https://doi.org/10.1007/s11892-010-0097-3   
6 I. C. Wells, Evidence that the etiology of the syndrome containing type 2 diabetes mellitus results from abnormal magnesium metabolism, Canadian journal of physiology and pharmacology, vol. 86, pp. 16-24, 2008. https://doi.org/10.1139/Y07-122   
7 H. Vasudevan and J. H. McNeill, Chronic cobalt treatment decreases hyperglycemia in streptozotocin-diabetic rats, Biometals, vol. 20, pp. 129-134, 2007. https://doi.org/10.1007/s10534-006-9020-4   
8 A. B. Chausmer, Zinc, insulin and diabetes, Journal of the American College of Nutrition, vol. 17, pp. 109-115, 1998. https://doi.org/10.1080/07315724.1998.10718735   
9 J. Jansen, W. Karges, and L. Rink, Zinc and diabetes-clinical links and molecular mechanisms, The Journal of nutritional biochemistry, vol. 20, pp. 399-417, 2009. https://doi.org/10.1016/j.jnutbio.2009.01.009   
10 E. Ueda, Y. Yoshikawa, H. Sakurai, Y. Kojima, and N. M. Kajiwara, In vitro alpha-glucosidase inhibitory effect of Zn (II) complex with 6-methyl-2-picolinmethylamide, Chemical and pharmaceutical bulletin, vol. 53, pp. 451-452, 2005. https://doi.org/10.1248/cpb.53.451   
11 H. Ishihara, P. Maechler, A. Gjinovci, P.-L. Herrera, and C. B. Wollheim, Islet β-cell secretion determines glucagon release from neighbouring α-cells, Nature cell biology, vol. 5, pp. 330-335, 2003. https://doi.org/10.1038/ncb951   
12 L. Egefjord, A. B. Petersen, A. M. Bak, and J. Rungby, Zinc, alpha cells and glucagon secretion, Current diabetes reviews, vol. 6, pp. 52-57, 2010. https://doi.org/10.2174/157339910790442655   
13 Q. Sun, R. M. Van Dam, W. C. Willett, and F. B. Hu, Prospective study of zinc intake and risk of type 2 diabetes in women, Diabetes care, vol. 32, pp. 629-634, 2009. https://doi.org/10.2337/dc08-1913   
14 J. A. Meyer and D. M. Spence, A perspective on the role of metals in diabetes: past findings and possible future directions, Metallomics, vol. 1, pp. 32-41, 2009. https://doi.org/10.1039/B817203J   
15 J. Uyoyo Ukperoro, N. Offiah, T. Idris, and D. Awogoke, Antioxidant effect of zinc, selenium and their combination on the liver and kidney of alloxan-induced diabetes in rats, Mediterranean Journal of Nutrition and Metabolism, vol. 3, pp. 25-30, 2010. https://doi.org/10.1007/s12349-009-0069-9   
16 S. Karmaker, T. K. Saha, Y. Yoshikawa, and H. Sakurai, A zinc (II)/poly (γ‐glutamic acid) complex as an oral therapeutic for the treatment of type‐2 diabetic KKAy mice, Macromolecular bioscience, vol. 9, pp. 279-286, 2009. https://doi.org/10.1002/mabi.200800190   
17 O. Akhavan and E. Ghaderi, Enhancement of antibacterial properties of Ag nanorods by electric field, Science and technology of advanced materials, 2009. https://doi.org/10.1088/1468-6996/10/1/015003   
18 F. Harding, Breast cancer: cause, prevention, cure: Tekline publishing, 2006.   
19 F. Yuan, H. Peng, Y. Yin, Y. Chunlei, and H. Ryu, Preparation of zinc oxide nanoparticles coated with homogeneous Al2O3 layer, Materials Science and Engineering: B, vol. 122, pp. 55-60, 2005. https://doi.org/10.1016/j.mseb.2005.04.016   
20 N. El-Kattan, A. N. Emam, A. S. Mansour, M. A. Ibrahim, A. B. Abd El-Razik, K. A. Allam, et al., Curcumin assisted green synthesis of silver and zinc oxide nanostructures and their antibacterial activity against some clinical pathogenic multi-drug resistant bacteria, RSC advances, vol. 12, pp. 18022-18038, 2022. https://doi.org/10.1039/D2RA00231K   
21 H. Nasri, N. Sahinfard, M. Rafieian, S. Rafieian, M. Shirzad, and M. Rafieian-Kopaei, Turmeric: A spice with multifunctional medicinal properties, Journal of HerbMed Pharmacology, vol. 3, 2014.   
22 M. Modasiya and V. Patel, Studies on solubility of curcumin, Int. J. Pharm. Life Sci, vol. 3, pp. 1490-1497, 2012.   
23 D. Cao, S. Gong, X. Shu, D. Zhu, and S. Liang, Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process, Nanoscale research letters, vol. 14, pp. 1-11, 2019. https://doi.org/10.1186/s11671-019-3038-3   
24 W. Perera, R. K. Dissanayake, U. Ranatunga, N. Hettiarachchi, K. Perera, J. M. Unagolla, et al., Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications, RSC advances, vol. 10, pp. 30785-30795, 2020. https://doi.org/10.1039/D0RA05755J   
25 S. Asri-Rezaei, B. Dalir-Naghadeh, A. Nazarizadeh, and Z. Noori-Sabzikar, Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats, Journal of Trace Elements in Medicine and Biology, vol. 42, pp. 129-141, 2017. https://doi.org/10.1016/j.jtemb.2017.04.013   
26 T. Szkudelski, Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model, Experimental biology and medicine, vol. 237, pp. 481-490, 2012. https://doi.org/10.1258/ebm.2012.011372   
27 R. A. Azouz and R. Korany, Toxic impacts of amorphous silica nanoparticles on liver and kidney of male adult rats: an in vivo study, Biological Trace Element Research, vol. 199, pp. 2653-2662, 2021. https://doi.org/10.1007/s12011-020-02386-3   
28 N. Saleh, T. Allam, R. M. Korany, A. M. Abdelfattah, A. M. Omran, M. A. Abd Eldaim, et al., Protective and therapeutic efficacy of hesperidin versus cisplatin against Ehrlich ascites carcinoma-induced renal damage in mice, Pharmaceuticals, vol. 15, p. 294, 2022. https://doi.org/10.3390/ph15030294   
29 P. Trinder, Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor, Annals of clinical Biochemistry, vol. 6, pp. 24-27, 1969. https://doi.org/10.1177/000456326900600108   
30 W. Richmond, Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum, Clinical chemistry, vol. 19, pp. 1350-1356, 1973. https://doi.org/10.1093/clinchem/19.12.1350   
31 C. C. Allain, L. S. Poon, C. S. Chan, W. Richmond, and P. C. Fu, Enzymatic determination of total serum cholesterol, Clinical chemistry, vol. 20, pp. 470-475, 1974. https://doi.org/10.1093/clinchem/20.4.470   
32 P. Fossati and L. Prencipe, Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide, Clinical chemistry, vol. 28, pp. 2077-2080, 1982. https://doi.org/10.1093/clinchem/28.10.2077   
33 M. Burstein, H. Scholnick, and R. Morfin, Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions, Journal of lipid research, vol. 11, pp. 583-595, 1970. https://doi.org/10.1016/S0022-2275(20)42943-8   
34 M. F. Lopes-Virella, P. Stone, S. Ellis, and J. A. Colwell, Cholesterol determination in high-density lipoproteins separated by three different methods, Clinical chemistry, vol. 23, pp. 882-884, 1977. https://doi.org/10.1093/clinchem/23.5.882   
35 H. Wieland and D. Seidel, A simple specific method for precipitation of low density lipoproteins, Journal of lipid research, vol. 24, pp. 904-909, 1983. https://doi.org/10.1016/S0022-2275(20)37936-0   
36 S. Reitman and S. Frankel, A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases, American journal of clinical pathology, vol. 28, pp. 56-63, 1957. https://doi.org/10.1093/ajcp/28.1.56   
37 J. D. Bancroft and M. Gamble, Theory and practice of histological techniques: Elsevier health sciences, 2008.   
38 C. Ricordi and C. Rastellini, In Ricordi C (ed): Methods in Cell Transplantation, Austin, Tex: Landes, 1995.   
39 R. M. Korany, K. S. Ahmed, H. Halawany, and K. A. Ahmed, Effect of long-term arsenic exposure on female Albino rats with special reference to the protective role of Spirulina platensis, Explor Anim Med Res, vol. 9, pp. 125-136, 2019.   
40 D. A. Madkour, M. M. Ahmed, S. H. Orabi, S. M. Sayed, R. M. Korany, and H. K. Khalifa, Nigella sativa oil protects against emamectin benzoate‐Induced neurotoxicity in rats, Environmental Toxicology, vol. 36, pp. 1521-1535, 2021. https://doi.org/10.1002/tox.23149   
41 R. M. Amin, S. A. Elfeky, T. Verwanger, B. Krammer, A new biocompatible nanocomposite as a promising constituent of sunscreens, Mater Sci Eng C Mater Biol Appl,. 2016 vol. 63, pp. 46-51, 2016. https://doi.org/10.1016/j.msec.2016.02.044   
42 M. H. H. Chai, N. Amir, N. Yahya, and I. M. Saaid, Characterization and colloidal stability of surface modified zinc oxide nanoparticle, in Journal of Physics: Conference Series, 2018, p. 012007. https://doi.org/10.1088/1742-6596/1123/1/012007   
43 T. M. S. U. Gunathilake, Y. C. Ching, H. Uyama, N. D. Hai, and C. H. Chuah, Enhanced curcumin loaded nanocellulose: a possible inhalable nanotherapeutic to treat COVID-19, Cellulose, vol. 29, pp. 1821-1840, 2022. https://doi.org/10.1007/s10570-021-04391-8   
44 S. A. Elfeky and S. M. Reda, MOF/Up-converting combination for photovoltaic application, Journal of Electroanalytical Chemistry, vol. 895, p. 115485, 2021. https://doi.org/10.1016/j.jelechem.2021.115485   
45 S. A., S. E. Mahmoud, and A. F. Youssef, Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water, Journal of advanced research, vol. 8, pp. 435-443, 2017. https://doi.org/10.1016/j.jare.2017.06.002   
46 M. Kasahun, A. Yadate, A. Belay, Z. Belay, M. Ramalingam, Antimicrobial Activity of Chemical, Thermal and Green Route-Derived Zinc Oxide Nanoparticles: A Comparative Analysis, Nano Biomed. Eng, Vol. 12, Iss. 1, 2020. https://doi.org/10.5101/nbe.v12i1.p47-56   
47 R. D. Umrani and K. M. Paknikar, Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats, Nanomedicine, vol. 9, pp. 89-104, 2014. https://doi.org/10.2217/nnm.12.205   
48 R. Tsao, Chemistry and biochemistry of dietary polyphenols, Nutrients, vol. 2, pp. 1231-1246, 2010. https://doi.org/10.3390/nu2121231   
49 M. T. Abdel Aziz, M. F. El-Asmar, A. M. Rezq, S. M. Mahfouz, M. A. Wassef, H. H. Fouad, et al., The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study), Diabetology & metabolic syndrome, vol. 5, pp. 1-14, 2013. https://doi.org/10.1186/1758-5996-5-75   
50 Sobeh, Eman I et al. Curcumin-loaded hydroxyapatite nanocomposite as a novel biocompatible shield for male Wistar rats from γ-irradiation hazard. Chemico-biological interactions, Vol. 370, 110328, 2023. https://doi.org/10.1016/j.cbi.2022.110328   
51 D.-w. Zhang, M. Fu, S.-H. Gao, and J.-L. Liu, Curcumin and diabetes: a systematic review, Evidence-Based Complementary and Alternative Medicine, vol. 2013, 2013. https://doi.org/10.1155/2013/636053   
52 C. Richards-Williams, J. L. Contreras, K. H. Berecek, and E. M. Schwiebert, Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion, Purinergic signalling, vol. 4, pp. 393-405, 2008. https://doi.org/10.1007/s11302-008-9126-y   
53 P. Suresh Babu and K. Srinivasan, Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats, Molecular and cellular biochemistry, 1997.   
54 P. Mayes, Cholesterol synthesis, transport, and excretion in Harper's Biochemistry (Murray, RK, Mayes, PA, Granner, DK, and Rodwell, VW) pp. 253-255, Appleton & Lange, East Norwalk, 1990.   
55 J. D. Bagdade, D. Porte Jr, and E. L. Bierman, Acute insulin withdrawal and the regulation of plasma triglyceride removal in diabetic subjects, Diabetes, vol. 17, pp. 127-132, 1968. https://doi.org/10.2337/diab.17.3.127   
56 N. Ashokkumar, L. Pari, A. Manimekalai, and K. Selvaraju, Effect of N‐benzoyl‐d‐phenylalanine on streptozotocin‐induced changes in the lipid and lipoprotein profile in rats, Journal of pharmacy and pharmacology, vol. 57, pp. 359-366, 2005. https://doi.org/10.1211/0022357055650   
57 M. Kanter, O. Coskun, A. Korkmaz, and S. Oter, Effects of Nigella sativa on oxidative stress and β‐cell damage in streptozotocin‐induced diabetic rats, The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology: An Official Publication of the American Association of Anatomists, vol. 279, pp. 685-691, 2004. https://doi.org/10.1002/ar.a.20056   
58 A. Uyar, T. Yaman, O. Kele, E. Alkan, I. Celik, and Z. Yener, Protective effects of Bryonia multiflora extract on pancreatic beta cells, liver and kidney of streptozotocin-induced diabetic rats: histopathological and immunohistochemical investigations, Indian journal of pharmaceutical education and research, vol. 51, 2017. https://doi.org/10.5530/ijper.51.3s.57   
59 C. Zhang, X. Lu, Y. Tan, B. Li, X. Miao, L. Jin, et al., Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model, PLoS One, vol. 7, p. e49257, 2012. https://doi.org/10.1371/journal.pone.0049257   
60 Elbadawy, H. A., El-Dissouky, A., Hussein, S. M., El-Kewaey, S. R., Elfeky, S. A., & El-Ghannam, G. (2023). A novel terpolymer nanocomposite (carboxymethyl β-cyclodextrin-nano chitosan-glutaraldehyde) for the potential removal of a textile dye acid red 37 from water. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1115377   
61 Sobeh, E. I., El-Ghannam, G., Korany, R. M., Saleh, H. M., & Elfeky, S. A. (2023). Curcumin-loaded hydroxyapatite nanocomposite as a novel biocompatible shield for male Wistar rats from γ-irradiation hazard. Chemico-Biological Interactions, 370, 110328. https://doi.org/10.1016/j.cbi.2022.110328