Characterization of herbal synthesized Ag doped ZnO nanoparticles as a potent cytotoxic agent on glioblastoma cell line

Document Type : Original Research Article

Authors

1 Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

2 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

10.22034/nmrj.2024.01.004

Abstract

The green synthesis of nanoparticles (NPs) can be achieved through the use of eco-friendly and readily available herbal extracts. In this particular study, the aqueous root extract of Biebersteinia multifidi (B. multifidi) plant was used to prepare pure zinc oxide (ZnO) nanoparticles as well as Ag-doped ZnO NPs (Ag/ZnO NPs) at concentrations of 1%, 5%, and 10%. The physicochemical features of NPs were characterized by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (PXRD), and UV-Vis spectrophotometer techniques. The findings exhibited that Ag ions were effectively doped in the ZnO structure based on PXRD and EDX analyses, while FESEM indicated that the obtained NPs were spherical with an increase in particle size as silver was introduced into the ZnO structure. To assess their cytotoxicity performance, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was performed on brain glioblastoma cells (U87) using both pure ZnO NPs and Ag-doped ZnO NPs. The findings indicated that Ag-doped ZnO NPs had a higher toxicity on U87 cells compared to pure ZnO NPs, suggesting that doping can enhance the cytotoxic performance of ZnO NPs.

Graphical Abstract

Characterization of herbal synthesized Ag doped ZnO nanoparticles as a potent cytotoxic agent on glioblastoma cell line

Keywords

Main Subjects


  1. Pugazhendhi, A.; Shobana, S.; Nguyen, D.D.; Banu, J.R.; Sivagurunathan, P.; Chang, S.W.; Ponnusamy, V.K.; Kumar, G. Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. Int. J. Hydrog. Energy. 2019, 44, 1431-1440. https://doi.org/10.1016/j.ijhydene.2018.11.114
  2. Abdollahii, S.; Jadidi, F.; Safari, M.; Javar, A.M.A.; Beheshtkhoo, N.; Kouhbanani, M.A.J. Adverse Effects of some of the Most Widely used Metal Nanoparticles on the Reproductive System. J. infertil. reprod. biol. 2020, 8, 22-32. https://doi.org/10.47277/JIRB/8(3)/22
  3. Kouhbanani, M.A.J.; Sadeghipour, Y.; Sarani, M.; Sefidgar, E.; Ilkhani, S.; Amani, A.M.; Beheshtkhoo, N. The inhibitory role of synthesized nickel oxide nanoparticles against Hep-G2, MCF-7, and HT-29 cell lines: The inhibitory role of NiO NPs against Hep-G2, MCF-7, and HT-29 cell lines. Green Chem. Lett. Rev. 2021, 14, 444-454. https://doi.org/10.1080/17518253.2021.1939435
  4. Leuba, K.D.; Durmus, N.G.; Taylor, E.N.; Webster, T.J. carboxylate functionalized superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int. J. Nanomed. 2013, 8, 731-736. https://doi.org/10.2147/IJN.S38256
  5. El Shafey, A.M. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process. Synth. 2020, 9, 304-339. https://doi.org/10.1515/gps-2020-0031
  6. Beheshtkhoo, N.; Alipour, M.H.; Nemati, R.; Baghbani, R.; Behzad, F.; Shafiee, M.; Kouhbanani, M.A.J.; Jangjou, A.; Mehrabi, M. A review of COVID-19: the main ways of transmission and some prevention solutions, clinical symptoms, more vulnerable human groups, risk factors, diagnosis, and treatment. J. Environ. Treat. Tech. 2020, 8, 884-893.
  7. Beheshtkhoo, N.; Kouhbanani, M.A.J.; sadat Dehghani, F. Fabrication and Properties of Collagen and Polyurethane Polymeric Nanofibers Using Electrospinning Technique for Tissue Engineering Applications. J. Environ. Treat. Tech. 2019, 7, 802-807.
  8. Mosleh-Shirazi, S.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Kasaee, S.R.; Jangjou, A.; Izadpanah, P.; Amani, A.M. Biosynthesis, simulation, and characterization of Ag/AgFeO2 core-shell nanocomposites for antimicrobial applications. J. Appl. Phys. 2021, 127, 1-8. https://doi.org/10.1007/s00339-021-05005-7
  9. Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Kouhbanani, M.A.J.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9. https://doi.org/10.3389/fbioe.2021.705886
  10. Nasirmoghadas, P.; Mousakhani, A.; Behzad, F.; Beheshtkhoo, N.; Hassanzadeh, A.; Nikoo, M.; Mehrabi, M.; Kouhbanani, M.A.J. Nanoparticles in cancer immunotherapies: an innovative strategy. Biotechnol. Prog. 2021, 37, e3070. https://doi.org/10.1002/btpr.3070
  11. Bisht, G.; Rayamajhi, S. ZnO nanoparticles: a promising anticancer agent. Nano biomed. 2016, 3, 3-9. https://doi.org/10.5772/63437
  12. Singh, T.A.; Das, J.; Sil, P.C. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. J. Colloid Interface Sci. 2020, 286, 102317. https://doi.org/10.1016/j.cis.2020.102317
  13. Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018. https://doi.org/10.1155/2018/9390784
  14. Ullah, A.; Saadullah, M.; Alvi, F.; Sherin, L.; Ali, A.; Shad, N.A.; Javed, Y.; Sajid, M.M.; Yasin, G.; Abbas, W. Synergistic effect of silver doped ZnO nanomaterials enhances the anticancer potential against A459 lung cancer cells. J. King Saud Univ. Sci. 2022, 34, 101724. https://doi.org/10.1016/j.jksus.2021.101724
  15. Ehsan, M.; Waheed, A.; Ullah, A.; Kazmi, A.; Ali, A.; Raja, N.I.; Mashwani, Z.-u.-R.; Sultana, T.; Mustafa, N.; Ikram, M. Plant-Based Bimetallic Silver-Zinc Oxide Nanoparticles: A Comprehensive Perspective of Synthesis, Biomedical Applications, and Future Trends. Biomed Res. Int., 2022. https://doi.org/10.1155/2022/1215183
  16. Hamidian, K.; Sarani, M.; Sheikhi, E.; Khatami, M. Cytotoxicity evaluation of green synthesized ZnO and Ag-doped ZnO nanoparticles on brain glioblastoma cells. J. Mol. Struct. 2022, 1251, 131962. https://doi.org/10.1016/j.molstruc.2021.131962
  17. Shreema, K.; Mathammal, R.; Kalaiselvi, V.; Vijayakumar, S.; Selvakumar, K.; Senthil, K. Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifoliaand its antioxidant potential. Mater. Today: Proc. 2021, 47, 2126-2131. https://doi.org/10.1016/j.matpr.2021.04.627
  18. Subhan, A.; Uddin, N.; Sarker, P.; Ahmed, N. Structure, Spectroscopy, Photocatalytic and Antibacterial Activities of Ag-ZnO-Fe3O4 Nanoparticles and Its Composites with APTMS and Curcumin. Adv. Sci. Eng. Med. 2016, 8, 676-688. https://doi.org/10.1166/asem.2016.1907
  19. Pandiyan, N.; Murugesan, B.; Arumugam, M.; Sonamuthu, J.; Samayanan, S.; Mahalingam, S. Ionic liquid-a greener templating agent with Justicia adhatoda plant extract assisted green synthesis of morphologically improved Ag-Au/ZnO nanostructure and it's antibacterial and anticancer activities. J. Photochem. Photobiol. B, Biol. 2019, 198, 111559. https://doi.org/10.1016/j.jphotobiol.2019.111559
  20. Fahmy, S.A.; Preis, E.; Bakowsky, U.; Azzazy, H.M.E.-S. Palladium nanoparticles fabricated by green chemistry: Promising chemotherapeutic, antioxidant and antimicrobial agents. Materials 2020, 13, 3661. https://doi.org/10.3390/ma13173661
  21. Gurunathan, S.; Kim, E.; Han, J.W.; Park, J.H.; Kim, J.-H. Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules 2015, 20, 22476-22498. https://doi.org/10.3390/molecules201219860
  22. Mukherjee, S.; Sushma, V.; Patra, S.; Barui, A.K.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 2012, 23, 455103. https://doi.org/10.1088/0957-4484/23/45/455103
  23. Rajeshkumar, S.; Kumar, S.V.; Malarkodi, C.; Vanaja, M.; Paulkumar, K.; Annadurai, G. Optimized Synthesis of Gold Nanoparticles using Green Chemical Process and its Invitro Anticancer Activity Against HepG2 and A549 Cell Lines. Mater. Sci. Eng. C. 2017, 9.
  24. Nithya, P.; Sundrarajan, M. Ionic liquid functionalized biogenic synthesis of AgAu bimetal doped CeO2 nanoparticles from Justicia adhatoda for pharmaceutical applications: Antibacterial and anti-cancer activities. J. Photochem. Photobiol. B, Biol. 2020, 202, 111706. https://doi.org/10.1016/j.jphotobiol.2019.111706
  25. Miri, A.; MOUSAvI, S.R.; Sarani, M.; Mahmoodi, Z. Using biebersteinia multifida aqueous extract, the photocatalytic activity of synthesized silver nanoparticles. Orient. J. Chem. 2018, 34, 1513. https://doi.org/10.13005/ojc/340342
  26. Sohrabnezhad, S.; Seifi, A. The green synthesis of Ag/ZnO in montmorillonite with enhanced photocatalytic activity. Applied Surface Science 2016, 386, 33-40. https://doi.org/10.1016/j.apsusc.2016.05.102
  27. Alharthi, F.A.; Alghamdi, A.A.; Al-Zaqri, N.; Alanazi, H.S.; Alsyahi, A.A.; Marghany, A.E.; Ahmad, N. Facile one-pot green synthesis of Ag-ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Scientific Reports 2020, 10, 20229.
  28. K Sali, R.; S Pujar, M.; Patil, S.; H Sidarai, A. Green synthesis of ZnO and Ag-ZnO nanoparticles using macrotyloma uniflorum: evaluation of antibacterial activity. Advanced Materials Letters 2021, 12, 1-7. https://doi.org/10.5185/amlett.2021.071645
  29. Mirzaee Rad, F.; Tafvizi, F.; Noorbazargan, H.; Iranbakhsh, A. Ag-doped ZnO nanoparticles synthesized through green method using Artemisia turcomanica extract induce cytotoxicity and apoptotic activities against AGS cancer cells: an in vitro study. Journal of Nanostructure in Chemistry 2023, 1-16. https://doi.org/10.1007/s40097-023-00528-2
  30. Ramya, S.; Kumar, S.P.; Srinivasan, T.; Aravind, T.; Lingaraja, D.; Ram, G.D.; Bhuvaneshwari, G. Green synthesis of Ag-doped ZnO using Nelumbo nucifera flower extract for antibacterial activity. Materials Today: Proceedings 2023. https://doi.org/10.1016/j.matpr.2023.01.028
  31. Yadav, L.R.; Pratibha, S.; Manjunath, K.; Shivanna, M.; Ramakrishnappa, T.; Dhananjaya, N.; Nagaraju, G. Green synthesis of AgZnO nanoparticles: Structural analysis, hydrogen generation, formylation and biodiesel applications. Journal of Science: Advanced Materials and Devices 2019, 4, 425-431. https://doi.org/10.1016/j.jsamd.2019.03.001
  32. Kumar, V.; Prakash, J.; Singh, J.P.; Chae, K.H.; Swart, C.; Ntwaeaborwa, O.; Swart, H.; Dutta, V. Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles. Colloids Surf. B: Biointerfaces 2017, 159, 191-199. https://doi.org/10.1016/j.colsurfb.2017.07.071
  33. Dobrucka, R. Synthesis of MgO Nanoparticles Using Artemisia abrotanum Herba Extract and Their Antioxidant and Photocatalytic Properties. Iran. J. Sci. Technol. Trans. A: Sci. 2018, 42, 547-555. https://doi.org/10.1007/s40995-016-0076-x
  34. Hamidian, K.; Sarani, M.; Barani, M.; Khakbaz, F. Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells. Arab. J. Chem. 2022, 15, 103792. https://doi.org/10.1016/j.arabjc.2022.103792
  35. Rajendran, R.; Mani, A. Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. J. Saudi Chem. Soc. 2020, 24, 1010-1024. https://doi.org/10.1016/j.jscs.2020.10.008
  36. Wahab, R.; Kaushik, N.K.; Verma, A.K.; Mishra, A.; Hwang, I.; Yang, Y.-B.; Shin, H.-S.; Kim, Y.-S. Fabrication and growth mechanism of ZnO nanostructures and their cytotoxic effect on human brain tumor U87, cervical cancer HeLa, and normal HEK cells. J. Biol. Inorg. Chem. 2011, 16, 431-442. https://doi.org/10.1007/s00775-010-0740-0