Comparing the production of carbon dots synthesized from Lactobacillus acidophilus and Bifidobacterium bifidum and investigating their antibacterial effects

Document Type : Original Research Article

Authors

1 Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Mycobacteriology and Pulmonary Research Department, Microbiology Research Center, Pasteur Institute of Iran

3 Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran

10.22034/nmrj.2024.01.009

Abstract

Objective(s): Klebsiella pneumoniae is a significant opportunistic bacterial pathogen, responsible for over 70% of human infections. The development of carbapenem resistance is considered a major risk to public health.
Methods: Cultivation of Klebsiella pneumonia isolates (100 samples) for phenotypic identification. Drug sensitivity was evaluated by disc diffusion method, and carbapenemase-producing isolates were identified by the mCIM and eCIM methods.  Lactobacillus acidophilus and Bifidobacterium bifidum were cultured and carbon dots were synthesized by hydrothermal method. The physicochemical properties of the carbon dots were investigated and their antibacterial activity against Klebsiella pneumonia isolates was determined.
Results: After identifying Klebsiella pneumonia isolates, 70 carbapenem-resistant isolates were found among the samples. Of these, 41% were serine carbapenemase and 29% were metallo-beta-lactamase. The minimum inhibitory concentration (MIC) for synthesized carbon dots was observed to be around 50 mg/mL.
Conclusions: Due to their beneficial properties, carbon dots can be used as an antimicrobial agent to treat antibiotic-resistant infectious diseases. This group of nanoparticles exhibits high activity and can be proposed as a new strategy to combat resistant infections.

Keywords

Main Subjects


1.‎ Shi L, Feng J, Zhan Z, Zhao Y, Zhou H, Mao H, et al. Comparative analysis of blaKPC-2-and rmtB-‎carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids from klebsiella pneumoniae CG258 strains ‎disseminated among multiple Chinese hospitals. Infect Drug Resist. 2018;11:1783-93. ‎https://doi.org/10.2147/IDR.S171953
‎2.‎ Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, et al. Antimicrobial activity of ‎lactobacillus species against carbapenem-resistant enterobacteriaceae. Front Microbiol. 2019;10(APR):1-10. https://doi.org/10.3389/fmicb.2019.00789
‎3.‎ Lin F, Li C, Chen Z. Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli ‎without affecting cell growth. Front Microbiol. 2018;9(FEB). https://doi.org/10.3389/fmicb.2018.00259
4.‎ Singh I, Arora R, Dhiman H, Pahwa R. Carbon quantum dots: Synthesis, characterization and ‎biomedical applications. Turkish J Pharm Sci. 2018;15(2):219-30. https://doi.org/10.4274/tjps.63497
‎5.‎ Dong X, Liang W, Meziani MJ, Sun YP, Yang L. Carbon dots as potent antimicrobial agents. ‎Theranostics. 2020;10(2):671-86. https://doi.org/10.7150/thno.39863
‎6.‎ Li P, Sun L, Xue S, Qu D, An L, Wang X, et al. Recent advances of carbon dots as new antimicrobial ‎agents. SmartMat. 2022;3(2):226-48. https://doi.org/10.1002/smm2.1131
‎7.‎ Ghirardello M, Ramos-Soriano J, Galan MC. Carbon dots as an emergent class of antimicrobial agents. ‎Nanomaterials. 2021;11(8):1-24. https://doi.org/10.3390/nano11081877
‎8.‎ Barzegari A, Kheyrolahzadeh K, Mahdi S, Khatibi H, Sharifi S, Memar MY, et al. The battle of ‎probiotics and their derivatives against biofilms. Infection and Drug Resistance. 2020. p. 659-672. ‎https://doi.org/10.2147/IDR.S232982
‎9.‎ Wu Y, Yang G, van der Mei HC, Shi L, Busscher HJ, Ren Y. Synergy between "probiotic" carbon ‎quantum dots and ciprofloxacin in eradicating infectious biofilms and their biosafety in mice. Pharmaceutics. ‎‎2021;13(11). https://doi.org/10.3390/pharmaceutics13111809
‎10.‎ Osman EA, El-Amin N, Adrees EAE, Al-Hassan L, Mukhtar M. Comparing conventional, ‎biochemical and genotypic methods for accurate identification of Klebsiella pneumoniae in Sudan. Access ‎Microbiol. 2020;2(3):2-5. https://doi.org/10.1099/acmi.0.000096
‎11.‎ Abdulla AA. Optimization of DNA extraction of Lactobacillus spp for identification by tuf B gene-‎based polymerase chain reaction. J Biol Agric Healthc. 2014;4(8):122-7. ‎
‎12.‎ Tabasco R, Paarup T, Janer C, Peláez C, Requena T. Selective enumeration and identification of mixed ‎cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei ‎subsp. paracasei and Bifidobacterium lactis in fermented milk. Int Dairy J. 2007;17(9):1107-14. ‎https://doi.org/10.1016/j.idairyj.2007.01.010
‎13.‎ Rezania N, Rahmati P, Noorbakhsh F, Farhadyar N, Lotfali E. Investigation the effects of silver ‎nanoparticles and gold nanoparticles on expression of bap and csu genes in biofilm formation of Acinetobacter ‎baumannii. Iran J Microbiol. 2022;14(4):510-7. ‎https://doi.org/10.18502/ijm.v14i4.10237
‎14.‎ Tsai YM, Wang S, Chiu HC, Kao CY, Wen LL. Combination of modified carbapenem inactivation ‎method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing ‎Enterobacteriaceae. BMC Microbiol. 2020;20(1):1-7. ‎https://doi.org/10.1186/s12866-020-02010-3
‎15.‎ Hudzicki J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am Soc ‎Microbiol [Internet]. 2012;(December 2009):1-13. ‎
‎16.‎ Methods G. Detection of the Klebsiella pneumoniae carbapenemase (KPC) in K.pneumoniae Isolated ‎from the Clinical Samples by the Phenotypic and Genotypic Methods. Iran J Pathol. 2012;353900(5865):199-‎‎205. https://doi.org/10.1186/s12866-020-02010-3
‎17.‎ John BK, Abraham T, Mathew B. A Review on Characterization Techniques for Carbon Quantum ‎Dots and Their Applications in Agrochemical Residue Detection. J Fluoresc. 2022;32(2):449-71. ‎https://doi.org/10.1007/s10895-021-02852-8
‎18.‎ Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J ‎Pharm Anal. 2016;6:71-9. https://doi.org/10.1016/j.jpha.2015.11.005
‎19.‎ Pajavand H, Mobarez AM, Nikkhah M, Delnavazi MR, Abiri R. Synthesis of C-dot by hydrothermal ‎method and evaluation of its anti-bacterial effect against antibiotic resistant S . areus and K. pneumonea. ‎Nanomed Res. 2023;8(2):167-76. https://doi.org/10.22034/nmrj.2023.02.006
‎20.‎ Sadaqat MH, Mobarez AM, Nikkhah M. Curcumin carbon dots inhibit biofilm formation and ‎expression of esp and gelE genes of Enterococcus faecium. Microb Pathog. 2022;173(Mic):9-10. ‎https://doi.org/10.1016/j.micpath.2022.105860
‎21.‎ Mura S, Ludmerczki R, Stagi L, Garroni S, Carbonaro CM, Ricci PC, et al. Integrating sol-gel and ‎carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films. Sci Rep. 2020;10(1):1-‎‎13. https://doi.org/10.1038/s41598-020-61517-x
‎22.‎ Tadesse A, Hagos M, Ramadevi D, Basavaiah K, Belachew N. Fluorescent-Nitrogen-Doped Carbon ‎Quantum Dots Derived from Citrus Lemon Juice: Green Synthesis, Mercury(II) Ion Sensing, and Live Cell ‎Imaging. ACS Omega. 2020;5(8):3889-98. https://doi.org/10.1021/acsomega.9b03175
‎23.‎ Wang M, Liu M, Nong S, Song W, Zhang X, Shen S, et al. Highly Luminescent Nucleoside-Based N, ‎P-Doped Carbon Dots for Sensitive Detection of Ions and Bioimaging. Front Chem. 2022;10(June):1-‎‎11. https://doi.org/10.3389/fchem.2022.906806
‎24.‎ Sadeghi Dousari A, Satarzadeh N. The Spread of Carbapenemase Genes in Klebsiellapneumoniae in ‎Iran: a Systematic Review. Int J Basic Sci Med. 2021;6(1):1-10. https://doi.org/10.34172/ijbsm.2021.01
‎25.‎ Abdelhalim MM, Saafan GS, El-Sayed HS, Ghaith DM. In vitro antibacterial effect of probiotics ‎against Carbapenamase-producing multidrug-resistant Klebsiella pneumoniae clinical isolates, Cairo, Egypt. J ‎Egypt Public Health Assoc. 2022;97(19). https://doi.org/10.1186/s42506-022-00114-4
‎26.‎ Varghese M, Balachandran M. Antibacterial efficiency of carbon dots against Gram-positive and ‎Gram-negative bacteria: A review. J Environ Chem Eng. 2021;9(6):106821. https://doi.org/10.1016/j.jece.2021.106821
27.‎ Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: Methods and literature. Int J ‎Nanomedicine. 2012;7:2767-81. ‎https://doi.org/10.2147/IJN.S24805
‎28.‎ Knoblauch R, Geddes CD. Carbon nanodots in photodynamic antimicrobial therapy: A review. ‎Materials (Basel). 2021;6:1-10. https://doi.org/10.34172/ijbsm.2021.01
‎29.‎ Wu Y, Li C, van der Mei HC, Busscher HJ, Ren Y. Carbon quantum dots derived from different ‎carbon sources for antibacterial applications. Antibiotics. 2021;10(6):623. ‎https://doi.org/10.3390/antibiotics10060623
‎30.‎ Abdullah NA, Mahmoud HE, El-Nikhely NA, Hussein AA, El-Khordagui LK. Carbon dots labeled ‎Lactiplantibacillus plantarum: a fluorescent multifunctional biocarrier for anticancer drug delivery. Front ‎Bioeng Biotechnol. 2023;11(May):1-17. https://doi.org/10.3389/fbioe.2023.1166094
‎31.‎ Hallaji Z, Bagheri Z, Oroujlo M, Nemati M, Tavassoli Z, Ranjbar B. An insight into the potentials of ‎carbon dots for in vitro live-cell imaging: recent progress, challenges, and prospects. Microchim Acta. ‎‎2022;189(5):35419708. https://doi.org/10.1007/s00604-022-05259-9
‎32.‎ Phan LMT, Cho S. Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A ‎Comprehensive Review. Bioinorg Chem Appl. 2022;2022. https://doi.org/10.1155/2022/9303703
‎33.‎ Fu T, Wan Y, Jin F, Liu B, Wang J, Yin X, et al. Efficient imaging based on P - and N-codoped carbon ‎dots for tracking division and viability assessment of lactic acid bacteria. Colloids Surfaces B Biointerfaces. ‎‎2023;223:1-2. https://doi.org/10.1016/j.colsurfb.2023.113155
‎34.‎ Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MMB, et al. Carbon dots: ‎Applications in bioimaging and theranostics. Int J Pharm. 2019;564:308-17. ‎https://doi.org/10.1016/j.ijpharm.2019.04.055
35.‎ Molaei MJ. Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC ‎Adv. 2019;9(12):6460-81. https://doi.org/10.1039/C8RA08088G
‎36.‎ Pajavand H, Mobarez AM, Barati A, Nikkhah M, Delnavazi MR, Abiri R, et al. Evaluation of ‎combined carbon dots and ciprofloxacin on the expression level of pslA, pelA, and ppyR genes and biofilm ‎production in ciprofloxacin-resistant Pseudomonas aeruginosa isolates from burn wound infection in Iran. J ‎Glob Antimicrob Resist. 2023;35:289-96. https://doi.org/10.1016/j.jgar.2023.10.005