The most common nanostructures as a contrast agent in medical imaging

Document Type : Review Paper

Authors

1 Department of Radiology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Pharmacy, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran

3 School of Medicine, Shahid Beheshti Medical University, Tehran, Iran

4 School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran

5 Advanced Diagnostic and Interventional Radiology Research Center (ADIR),Tehran University of Medical Sciences, Tehran, Iran

6 Department of Radiology, Cancer institute, Tehran University of Medical Sciences, Tehran, Iran

7 Department of Psychiatry, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran

Abstract

The differentiation of certain structures from nearby tissues during medical imaging requires a sufficient amount of signals from the targeted area. The limitations of conventional contrast agents prevent the possibility of quick and accurate diagnosis of some cases and cause many problems for the patients and society. However, most of these restrictions can be surpassed through the unique physico-chemical characteristic nanotechnologyology and nano structures. Nanocarriers are abled to take the role of contrast agents or even provide the efficient delivery of these agents as carriers, while the capability of nanostructures in facilitating the simultaneous transportation of diagnostic and therapeutic agents is also undeniable. Thanks to the modern application of nanotechnology, it is possible to perform the targeted distribution of diagnostic and therapeutic agents to the desired locations. The status of in vivo surveillance and targeting efficiency can be improved by exploiting the potential benefits of nanoparticles and therefore, it is quiet expected to witness interesting characteristics from nanocarrier imaging agents for the diagnosis and staging of different diseases. This work presents a summary on the most common contrast agent nanostructures in medical imaging.

Keywords

Main Subjects


  1. 1. He, W., K. Ai, and L. Lu, Nanoparticulate X-ray CT contrast agents. Science China Chemistry, 2015. 58(5): p. 753-760. https://doi.org/10.1007/s11426-015-5351-8
    2. Faulkner, S. and N.J. Long, Radiopharmaceuticals for imaging and therapy. Dalton Transactions, 2011. 40(23): p. 6067-6067. https://doi.org/10.1039/c1dt90067f
    3. Huang, Y., et al., Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012. 4(20): p. 6135-6149. https://doi.org/10.1039/c2nr31715j
    4. James, M.L. and S.S. Gambhir, A molecular imaging primer: modalities, imaging agents, and applications. Physiological reviews, 2012. 92(2): p. 897-965. https://doi.org/10.1152/physrev.00049.2010
    5. Kherlopian, A.R., et al., A review of imaging techniques for systems biology. BMC systems biology, 2008. 2(1): p. 1-18. https://doi.org/10.1186/1752-0509-2-74          
    6. Massoud, T.F. and S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & development, 2003. 17(5): p. 545-580. https://doi.org/10.1101/gad.1047403            
    7. Rudin, M. and R. Weissleder, Molecular imaging in drug discovery and development. Nature reviews Drug discovery, 2003. 2(2): p. 123-131. https://doi.org/10.1038/nrd1007             
    8. Cormode, D.P., et al., Modified natural nanoparticles as contrast agents for medical imaging. Advanced drug delivery reviews, 2010. 62(3): p. 329-338. https://doi.org/10.1016/j.addr.2009.11.005   
    9. Bremer, C., V. Ntziachristos, and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications. European radiology, 2003. 13(2): p. 231-243. https://doi.org/10.1007/s00330-002-1610-0                    
    10. Du, Y., et al., Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). International journal of molecular sciences, 2013. 14(9): p. 18682-18710. https://doi.org/10.3390/ijms140918682     

    1. Lee, S.H., et al., Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014. 6(2): p. 196-209. https://doi.org/10.1002/wnan.1243
      12. Razi, M., et al., The peep of nanotechnology in reproductive medicine: a mini-review. International Journal of Medical Laboratory, 2015. 2(1): p. 1-15.
      13. Krupinski, E.A. and Y. Jiang, Anniversary paper: evaluation of medical imaging systems. Medical physics, 2008. 35(2): p. 645-659. https://doi.org/10.1118/1.2830376            
      14. Vivero-Escoto, J.L., R.C. Huxford-Phillips, and W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chemical Society Reviews, 2012. 41(7): p. 2673-2685. https://doi.org/10.1039/c2cs15229k                   
      15. Janib, S.M., A.S. Moses, and J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Advanced drug delivery reviews, 2010. 62(11): p. 1052-1063. https://doi.org/10.1016/j.addr.2010.08.004 
      16. Gunasekera, U.A., Q.A. Pankhurst, and M. Douek, Imaging applications of nanotechnology in cancer. Targeted Oncology, 2009. 4(3): p. 169-181. https://doi.org/10.1007/s11523-009-0118-9   
      17. Sanvicens, N. and M.P. Marco, Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends in biotechnology, 2008. 26(8): p. 425-433. https://doi.org/10.1016/j.tibtech.2008.04.005             
      18. Morais, M.G.d., et al., Biological applications of nanobiotechnology. Journal of nanoscience and nanotechnology, 2014. 14(1): p. 1007-1017. https://doi.org/10.1166/jnn.2014.8748        
      19. Wang, X., et al., Application of nanotechnology in cancer therapy and imaging. CA: a cancer journal for clinicians, 2008. 58(2): p. 97-110. https://doi.org/10.3322/CA.2007.0003   
      20. Sajja, H.K., et al., Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Current drug discovery technologies, 2009. 6(1): p. 43-51. https://doi.org/10.2174/157016309787581066   
      21. Yang, X., et al., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 2011. 32(17): p. 4151-4160. https://doi.org/10.1016/j.biomaterials.2011.02.006            
      22. Frangioni, J.V., et al., Sentinel lymph node mapping with type-II quantum dots, in Quantum Dots. 2007, Springer. p. 147-159. https://doi.org/10.1385/1-59745-369-2:147     
      23. Sun, C., J.S. Lee, and M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 2008. 60(11): p. 1252-1265. https://doi.org/10.1016/j.addr.2008.03.018                
      24. Surendiran, A., et al., Novel applications of nanotechnology in medicine. Indian Journal of Medical Research, 2009. 130(6).                   
      25. Fountaine, T.J., et al., Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Modern Pathology, 2006. 19(9): p. 1181-1191. https://doi.org/10.1038/modpathol.3800628     
      26. Farajzadeh, R., et al., Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artificial cells, nanomedicine, and biotechnology, 2018. 46(5): p. 917-925. https://doi.org/10.1080/21691401.2017.1347879               
      27. Mohammadian, F., et al., Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iranian journal of cancer prevention, 2016. 9(4). https://doi.org/10.17795/ijcp-4190           
      28. Mohammadian, F., et al., Upregulation of Mir-34a in AGS gastric cancer cells by a PLGA-PEG-PLGA chrysin nano formulation. Asian Pacific Journal of Cancer Prevention, 2016. 16(18): p. 8259-8263. https://doi.org/10.7314/APJCP.2015.16.18.8259                
      29. Kumar, R., et al., Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS nano, 2008. 2(3): p. 449-456. https://doi.org/10.1021/nn700370b             
      30. Nagasaki, Y., et al., Novel Molecular Recognition via Fluorescent Resonance Energy Transfer Using a Biotin− PEG/Polyamine Stabilized CdS Quantum Dot. Langmuir, 2004. 20(15): p. 6396-6400. https://doi.org/10.1021/la036034c                 
      31. Rhyner, M.N., et al., Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. 2006. https://doi.org/10.2217/17435889.1.2.209       
      32. Smith, A.M., et al., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced drug delivery reviews, 2008. 60(11): p. 1226-1240. https://doi.org/10.1016/j.addr.2008.03.015                
      33. Baker, M., Nanotechnology imaging probes: smaller and more stable. Nature methods, 2010. 7(12): p. 957-962. https://doi.org/10.1038/nmeth1210-957          
      34. Bentolila, L.A., Y. Ebenstein, and S. Weiss, Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine, 2009. 50(4): p. 493-496. https://doi.org/10.2967/jnumed.108.053561                    
      35. Gao, X., et al., In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology, 2004. 22(8): p. 969-976. https://doi.org/10.1038/nbt994         
      36. Cai, W. and H. Hong, In a "nutshell": intrinsically radio-labeled quantum dots. American Journal of Nuclear Medicine and Molecular Imaging, 2012. 2(2): p. 136.            
      37. Smith, B.R., et al., Real-time intravital imaging of RGD− quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano letters, 2008. 8(9): p. 2599-2606. https://doi.org/10.1021/nl080141f   
      38. Cai, W., et al., Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. Journal of Nuclear Medicine, 2007. 48(11): p. 1862-1870. https://doi.org/10.2967/jnumed.107.043216               
      39. Schipper, M.L., et al., microPET-based biodistribution of quantum dots in living mice. Journal of Nuclear Medicine, 2007. 48(9): p. 1511-1518. https://doi.org/10.2967/jnumed.107.040071       
      40. Hu, K., et al., In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. Journal of Nuclear Medicine, 2015. 56(8): p. 1278-1284. https://doi.org/10.2967/jnumed.115.158873                 
      41. Kim, S., et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature biotechnology, 2004. 22(1): p. 93-97. https://doi.org/10.1038/nbt920                  
      42. So, M.-K., et al., Self-illuminating quantum dot conjugates for in vivo imaging. Nature biotechnology, 2006. 24(3): p. 339-343. https://doi.org/10.1038/nbt1188   
      43. Voura, E.B., et al., Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature medicine, 2004. 10(9): p. 993-998. https://doi.org/10.1038/nm1096         
      44. Stroh, M., et al., Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature medicine, 2005. 11(6): p. 678-682. https://doi.org/10.1038/nm1247           
      45. Schipper, M.L., et al., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small, 2009. 5(1): p. 126-134. https://doi.org/10.1002/smll.200800003       
      46. Liu, W., et al., Compact biocompatible quantum dots functionalized for cellular imaging. Journal of the American Chemical Society, 2008. 130(4): p. 1274-1284. https://doi.org/10.1021/ja076069p                
      47. Liu, W., et al., Compact cysteine-coated CdSe (ZnCdS) quantum dots for in vivo applications. Journal of the American Chemical Society, 2007. 129(47): p. 14530-14531. https://doi.org/10.1021/ja073790m          
      48. Lovrić, J., et al., Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chemistry & biology, 2005. 12(11): p. 1227-1234. https://doi.org/10.1016/j.chembiol.2005.09.008                   
      49. Naha, P.C., P. Chhour, and D.P. Cormode, Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicology in Vitro, 2015. 29(7): p. 1445-1453. https://doi.org/10.1016/j.tiv.2015.05.022               
      50. Thakor, A., et al., Gold nanoparticles: a revival in precious metal administration to patients. Nano letters, 2011. 11(10): p. 4029-4036. https://doi.org/10.1021/nl202559p                   
      51. Eck, W., et al., PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS nano, 2008. 2(11): p. 2263-2272. https://doi.org/10.1021/nn800429d                   
      52. Li, X., et al., Nanostructured scaffolds for bone tissue engineering. Journal of biomedical materials research Part A, 2013. 101(8): p. 2424-2435. https://doi.org/10.1002/jbm.a.34539                  
      53. Cheheltani, R., et al., Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials, 2016. 102: p. 87-97. https://doi.org/10.1016/j.biomaterials.2016.06.015         
      54. Banstola, A., et al., Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer. Macromolecular Research, 2018. 26(11): p. 955-964. https://doi.org/10.1007/s13233-018-6139-4                 
      55. Lu, W., Xiong c., Zhang G., Huang Q., Zhang r., Zhang JZ, Li c. clin. cancer res, 2009. 15: p. 876-886. https://doi.org/10.1158/1078-0432.CCR-08-1480              
      56. Lu, W., et al., II, Huang Q, Gelovani JG and Li C: Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res, 2010. 70(8): p. 3177-3188. https://doi.org/10.1158/0008-5472.CAN-09-3379     
      57. Liu, L., N. Xia, and J. Wang, Potential applications of SPR in early diagnosis and progression of Alzheimer's disease. Rsc Advances, 2012. 2(6): p. 2200-2204. https://doi.org/10.1039/c2ra00667g             
      58. Souto, D.E., et al., A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta, 2019. 205: p. 120122. https://doi.org/10.1016/j.talanta.2019.120122                  
      59. England, C.G., et al., Molecular imaging of pancreatic cancer with antibodies. Molecular pharmaceutics, 2016. 13(1): p. 8-24. https://doi.org/10.1021/acs.molpharmaceut.5b00626       
      60. Guo, Y., et al., Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. International journal of nanomedicine, 2013: p. 3437-3446. https://doi.org/10.2147/IJN.S47585            
      61. Hainfeld, J., et al., Gold nanoparticles: a new X-ray contrast agent. The British journal of radiology, 2006. 79(939): p. 248-253. https://doi.org/10.1259/bjr/13169882              
      62. Houghton, J.L., et al., Site-specifically labeled CA19. 9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proceedings of the National Academy of Sciences, 2015. 112(52): p. 15850-15855. https://doi.org/10.1073/pnas.1506542112       
      63. Debouttière, P.J., et al., Design of gold nanoparticles for magnetic resonance imaging. Advanced Functional Materials, 2006. 16(18): p. 2330-2339. https://doi.org/10.1002/adfm.200600242          
      64. Lee, S.B., et al., Engineering of radioiodine-labeled gold core-shell nanoparticles as efficient nuclear medicine imaging agents for trafficking of dendritic cells. ACS applied materials & interfaces, 2017. 9(10): p. 8480-8489. https://doi.org/10.1021/acsami.6b14800          
      65. Kim, K.S., et al., Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromolecular Research, 2012. 20(3): p. 277-282. https://doi.org/10.1007/s13233-012-0062-x             
      66. Nebu, J., et al., Erlotinib conjugated gold nanocluster enveloped magnetic iron oxide nanoparticles-A targeted probe for imaging pancreatic cancer cells. Sensors and Actuators B: Chemical, 2018. 257: p. 1035-1043. https://doi.org/10.1016/j.snb.2017.11.017       
      67. Mallidi, S., et al., Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano letters, 2009. 9(8): p. 2825-2831. https://doi.org/10.1021/nl802929u               
      68. Khanal, A., et al., Detection of pancreatic tumors in vivo with tumor targeted mesoporous silica-coated gold nanorods by multispectral optoacoustic tomography. Nano Res., 2015. 8: p. 3864-3877. https://doi.org/10.1007/s12274-015-0886-8            
      69. Holbrook, R.J., et al., Gd (III)-dithiolane gold nanoparticles for T 1-weighted magnetic resonance imaging of the pancreas. Nano letters, 2016. 16(5): p. 3202-3209. https://doi.org/10.1021/acs.nanolett.6b00599          
      70. Hayashi, K., et al., Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core-shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chemical communications, 2013. 49(46): p. 5334-5336. https://doi.org/10.1039/c3cc41876f                  
      71. Ankri, R., et al., Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano letters, 2014. 14(5): p. 2681-2687. https://doi.org/10.1021/nl500573d                    
      72. Popovtzer, R., et al., Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano letters, 2008. 8(12): p. 4593-4596. https://doi.org/10.1021/nl8029114         
      73. Jung, S., et al., Dynamic in vivo X-ray fluorescence imaging of gold in living mice exposed to gold nanoparticles. IEEE transactions on medical imaging, 2019. 39(2): p. 526-533. https://doi.org/10.1109/TMI.2019.2932014 
      74. Torrisi, L., N. Restuccia, and I. Paterniti, Gold nanoparticles by laser ablation for X-ray imaging and protontherapy improvements. Recent patents on Nanotechnology, 2018. 12(1): p. 59-69. https://doi.org/10.2174/1872210511666170609093433                   
      75. Agarwal, A., et al., Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Journal of applied physics, 2007. 102(6): p. 064701. https://doi.org/10.1063/1.2777127       
      76. Li, W., et al. Monte Carlo simulations of dose enhancement around gold nanoparticles used as x-ray imaging contrast agents and radiosensitizers. in Medical Imaging 2014: Physics of Medical Imaging. 2014. SPIE. https://doi.org/10.1117/12.2043687  
      77. Eck, W., et al., Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano letters, 2010. 10(7): p. 2318-2322. https://doi.org/10.1021/nl101019s                  
      78. Kouhbanani, M.A.J., et al., Green synthesis of iron oxide nanoparticles using Artemisia vulgaris leaf extract and their application as a heterogeneous Fenton-like catalyst for the degradation of methyl orange. Materials Research Express, 2018. 5(11): p. 115013. https://doi.org/10.1088/2053-1591/aadde8      
      79. Kouhbanani, M.A.J., et al., One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019. 10(1): p. 015007. https://doi.org/10.1088/2043-6254/aafe74              
      80. Laurent, S. and M. Mahmoudi, Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. International journal of molecular epidemiology and genetics, 2011. 2(4): p. 367.                
      81. Thorek, D.L., et al., Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of biomedical engineering, 2006. 34(1): p. 23-38. https://doi.org/10.1007/s10439-005-9002-7  
      82. Yu, M.K., et al., Drug‐loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie International Edition, 2008. 47(29): p. 5362-5365. https://doi.org/10.1002/anie.200800857   
      83. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS chemical neuroscience, 2011. 2(3): p. 118-140. https://doi.org/10.1021/cn100100e       
      84. Mahmoudi, M., A. Simchi, and M. Imani, Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications. Journal of the Iranian Chemical Society, 2010. 7(2): p. S1-S27. https://doi.org/10.1007/BF03246181                
      85. Mahmoudi, M., et al., Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. The Journal of Physical Chemistry B, 2008. 112(46): p. 14470-14481. https://doi.org/10.1021/jp803016n                   
      86. Gupta, A.K., et al., Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. 2007. https://doi.org/10.2217/17435889.2.1.23               
      87. Lee, H., et al., Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. Journal of the American Chemical Society, 2007. 129(42): p. 12739-12745. https://doi.org/10.1021/ja072210i 
      88. Kellar, K.E., et al., NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive‐contrast MR angiography. Journal of Magnetic Resonance Imaging, 2000. 11(5): p. 488-494. https://doi.org/10.1002/(SICI)1522-2586(200005)11:5<488::AID-JMRI4>3.0.CO;2-V              
      89. L. Villaraza, A.J., A. Bumb, and M.W. Brechbiel, Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chemical reviews, 2010. 110(5): p. 2921-2959. https://doi.org/10.1021/cr900232t                    
      90. LaConte, L., N. Nitin, and G. Bao, Magnetic nanoparticle probes. Materials today, 2005. 8(5): p. 32-38. https://doi.org/10.1016/S1369-7021(05)00893-X               
      91. Laurent, S., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 2008. 108(6): p. 2064-2110. https://doi.org/10.1021/cr068445e       
      92. Medarova, Z., et al., In vivo imaging of siRNA delivery and silencing in tumors. Nature medicine, 2007. 13(3): p. 372-377. https://doi.org/10.1038/nm1486   
      93. Le Fur, M., et al., Radiolabeling and PET-MRI microdosing of the experimental cancer therapeutic, MN-anti-miR10b, demonstrates delivery to metastatic lesions in a murine model of metastatic breast cancer. Cancer nanotechnology, 2021. 12(1): p. 1-15. https://doi.org/10.1186/s12645-021-00089-5            
      94. Yeste, M., et al., Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques. Ceramics International, 2022. 48(21): p. 31191-31202. https://doi.org/10.1016/j.ceramint.2022.06.194               
      95. Mahmoudi, M., et al., Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chemical reviews, 2011. 111(2): p. 253-280. https://doi.org/10.1021/cr1001832                   
      96. Choi, H., et al., Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery1. Academic radiology, 2004. 11(9): p. 996-1004. https://doi.org/10.1016/j.acra.2004.04.018     
      97. Xie, J., et al., PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010. 31(11): p. 3016-3022. https://doi.org/10.1016/j.biomaterials.2010.01.010            
      98. Hoopes, P.J., et al. In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution. in Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging. 2012. SPIE. https://doi.org/10.1117/12.916097                    
      99. Serda, R.E., et al., Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Molecular imaging, 2007. 6(4): p. 7290.2007. 00025. https://doi.org/10.2310/7290.2007.00025           
      100. Leuschner, C., et al., LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast cancer research and treatment, 2006. 99(2): p. 163-176. https://doi.org/10.1007/s10549-006-9199-7     
      101. Sun, C., et al., In vivo MRI detection of gliomas by chlorotoxin‐conjugated superparamagnetic nanoprobes. Small, 2008. 4(3): p. 372-379. https://doi.org/10.1002/smll.200700784                    
      102. Zhang, C., et al., Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer research, 2007. 67(4): p. 1555-1562. https://doi.org/10.1158/0008-5472.CAN-06-1668             
      103. Artemov, D., et al., MR molecular imaging of the Her‐2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2003. 49(3): p. 403-408. https://doi.org/10.1002/mrm.10406                
      104. Toma, A., et al., Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. British journal of cancer, 2005. 93(1): p. 131-136. https://doi.org/10.1038/sj.bjc.6602668    
      105. Uchida, M., et al., Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. Journal of the American Chemical Society, 2006. 128(51): p. 16626-16633. https://doi.org/10.1021/ja0655690          
      106. Nakhaei, P., et al., Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in Bioengineering and Biotechnology, 2021: p. 748. https://doi.org/10.3389/fbioe.2021.705886                 
      107. Pratt, L.R. and A. Pohorille, Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chemical Reviews, 2002. 102(8): p. 2671-2692. https://doi.org/10.1021/cr000692+             
      108. Tu, Y., et al., Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chemical reviews, 2016. 116(4): p. 2023-2078. https://doi.org/10.1021/acs.chemrev.5b00344                   
      109. Chetoni, P., et al., Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. Journal of ocular pharmacology and therapeutics, 2004. 20(2): p. 169-177. https://doi.org/10.1089/108076804773710849                   
      110. Rovira-Bru, M., D.H. Thompson, and I. Szleifer, Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures. Biophysical Journal, 2002. 83(5): p. 2419-2439. https://doi.org/10.1016/S0006-3495(02)75255-7              
      111. Silindir, M., et al., Liposomes and their applications in molecular imaging. Journal of drug targeting, 2012. 20(5): p. 401-415. https://doi.org/10.3109/1061186X.2012.685477                 
      112. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 2005. 4(2): p. 145-160. https://doi.org/10.1038/nrd1632       
      113. Benech, R.-O., et al., Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Applied and environmental microbiology, 2002. 68(8): p. 3683-3690. https://doi.org/10.1128/AEM.68.8.3683-3690.2002           
      114. Shehata, T., et al., Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. International journal of pharmaceutics, 2008. 359(1-2): p. 272-279. https://doi.org/10.1016/j.ijpharm.2008.04.004                    
      115. Pattni, B.S., V.V. Chupin, and V.P. Torchilin, New developments in liposomal drug delivery. Chemical reviews, 2015. 115(19): p. 10938-10966. https://doi.org/10.1021/acs.chemrev.5b00046               
      116. Xia, Y., et al., Liposome-based probes for molecular imaging: from basic research to the bedside. Nanoscale, 2019. 11(13): p. 5822-5838. https://doi.org/10.1039/C9NR00207C             
      117. Portnoy, E., et al., Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 7(4): p. 480-488. https://doi.org/10.1016/j.nano.2011.01.001           
      118. Seo, J.W., et al., A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjugate chemistry, 2008. 19(12): p. 2577-2584. https://doi.org/10.1021/bc8002937      
      119. Zheng, J., D. Jaffray, and C. Allen, Quantitative CT imaging of the spatial and temporal distribution of liposomes in a rabbit tumor model. Molecular Pharmaceutics, 2009. 6(2): p. 571-580. https://doi.org/10.1021/mp800234r    
      120. Bhavane, R., et al., Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Circulation: Cardiovascular Imaging, 2013. 6(2): p. 285-294. https://doi.org/10.1161/CIRCIMAGING.112.000119       
      121. Ghaghada, K.B., et al., Computed tomography imaging of solid tumors using a liposomal-iodine contrast agent in companion dogs with naturally occurring cancer. PloS one, 2016. 11(3): p. e0152718. https://doi.org/10.1371/journal.pone.0152718                   
      122. Mukundan Jr, S., et al., A liposomal nanoscale contrast agent for preclinical CT in mice. American Journal of Roentgenology, 2006. 186(2): p. 300-307. https://doi.org/10.2214/AJR.05.0523           
      123. Ringhieri, P., et al., Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. International journal of nanomedicine, 2017. 12: p. 501. https://doi.org/10.2147/IJN.S113607      
      124. Jensen, A.I., et al., Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. Journal of Controlled Release, 2018. 269: p. 100-109. https://doi.org/10.1016/j.jconrel.2017.11.006 
      125. Yu, B., et al., Reassembly of 89Zr‐Labeled Cancer Cell Membranes into Multicompartment Membrane‐Derived Liposomes for PET‐Trackable Tumor‐Targeted Theranostics. Advanced Materials, 2018. 30(13): p. 1704934. https://doi.org/10.1002/adma.201704934        
      126. Lee, H., et al., Companion diagnostic 64Cu-liposome positron emission tomography enables characterization of drug delivery to tumors and predicts response to cancer nanomedicines. Theranostics, 2018. 8(9): p. 2300. https://doi.org/10.7150/thno.21670                  
      127. Gawne, P., et al., Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalton Transactions, 2018. 47(28): p. 9283-9293. https://doi.org/10.1039/C8DT00100F 
      128. Lajunen, T., et al., The effect of light sensitizer localization on the stability of indocyanine green liposomes. Journal of Controlled Release, 2018. 284: p. 213-223. https://doi.org/10.1016/j.jconrel.2018.06.029      
      129. Guan, C., et al., Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta, 2018. 182: p. 314-323. https://doi.org/10.1016/j.talanta.2018.01.069     
      130. Aizik, G., et al., Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue. ACS nano, 2017. 11(3): p. 3038-3051. https://doi.org/10.1021/acsnano.7b00016       
      131. Sheng, D., et al., Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials, 2018. 165: p. 1-13. https://doi.org/10.1016/j.biomaterials.2018.02.041              
      132. Zhang, L., et al., Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics, 2018. 8(6): p. 1591. https://doi.org/10.7150/thno.22430          
      133. Chen, Q., et al., H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proceedings of the National Academy of Sciences, 2017. 114(21): p. 5343-5348. https://doi.org/10.1073/pnas.1701976114       
      134. Sun, Q., et al., Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS applied materials & interfaces, 2018. 10(2): p. 1963-1975. https://doi.org/10.1021/acsami.7b13651