Mesenchymal stem/stromal cells and their exosomes as natural nano-particles for arthritis therapy; hype and hope

Document Type : Review Paper

Authors

1 Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2 Medical Surgical Nursing Department, King Khalid University, Khamis Mushate, Saudi Arabia

3 College of Health and Medical Techniques, Al-Bayan University, Baghdad, Iraq

4 Department of Anesthesia, College of Health & medical Technology, Al-Ayen University, Thi-Qar, Iraq

5 Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq

Abstract

In order to reduce cartilage damage and enhance tissue regeneration in a variety of musculoskeletal conditions, particularly rheumatoid arthritis (RA) and osteoarthritis (OA), mesenchymal stem/stromal cells (MSCs)-based treatments have attracted increasing attention. The effects of MSCs are primarily controlled by inhibiting inflammatory reactions and inducing immunomodulation, which is largely accomplished by the secretion of a variety of anti-inflammatory cytokines. These mediators prevent the proliferation and motility of FLS in vivo, which prevents cartilage degeneration. Furthermore, MSCs-derived nanometric exosome therapy can inhibit the activity of matrix metalloproteinases (MMPs), which function as matrix-degrading enzymes, and ultimately results in decreased extracellular matrix (ECM) breakdown. MSCs-derived exosome in fact act as cell-free sources in the context of the regenerative medicine. In addition, administration of MSCs intravenously and systemically to patients with OA and RA has been shown to be safe and effective therapeutically. Here, we have focused on the ability of MSC-based approaches like using MSCs-derived exosome to favor both chondrogenic and chondroprotective influences in arthritis.

Keywords

Main Subjects


  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356-61. https://doi.org/10.1038/nature01661
  2. Glyn-Jones S, Palmer A, Agricola R, Price A, Vincent T, Weinans H, et al. Osteoarthritis. The Lancet. 2015;386(9991):376-87. https://doi.org/10.1016/S0140-6736(14)60802-3
  3. Buckwalter JA, Saltzman C, Brown T. The impact of osteoarthritis: implications for research. Clinical Orthopaedics and Related Research®. 2004;427:S6-S15. https://doi.org/10.1097/01.blo.0000143938.30681.9d
  4. Sinusas K. Osteoarthritis: diagnosis and treatment. American family physician. 2012;85(1):49-56.
  5. Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis. Nature Reviews Rheumatology. 2020;16(12):673-88. https://doi.org/10.1038/s41584-020-00518-6
  6. Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Medical Clinics. 2020;104(2):293-311. https://doi.org/10.1016/j.mcna.2019.10.007
  7. Gregori D, Giacovelli G, Minto C, Barbetta B, Gualtieri F, Azzolina D, et al. Association of pharmacological treatments with long-term pain control in patients with knee osteoarthritis: a systematic review and meta-analysis. Jama. 2018;320(24):2564-79. https://doi.org/10.1001/jama.2018.19319
  8. Wu Y, Goh EL, Wang D, Ma S. Novel treatments for osteoarthritis: an update. Open access rheumatology: research and reviews. 2018;10:135. https://doi.org/10.2147/OARRR.S176666
  9. Ross CL, Ang DC, Almeida-Porada G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Frontiers in immunology. 2019;10:266. https://doi.org/10.3389/fimmu.2019.00266
  10. Feng Z, Zhai Y, Zheng Z, Yang L, Luo X, Dong X, et al. Loss of A20 in BM-MSCs regulates the Th17/Treg balance in rheumatoid arthritis. Scientific reports. 2018;8(1):1-11. https://doi.org/10.1038/s41598-017-18693-0
  11. Marofi F, Hassanzadeh A, Solali S, Vahedi G, Mousavi Ardehaie R, Salarinasab S, et al. Epigenetic mechanisms are behind the regulation of the key genes associated with the osteoblastic differentiation of the mesenchymal stem cells: The role of zoledronic acid on tuning the epigenetic changes. Journal of cellular physiology. 2019;234(9):15108-22. https://doi.org/10.1002/jcp.28152
  12. Ahani-Nahayati M, Shariati A, Mahmoodi M, Olegovna Zekiy A, Javidi K, Shamlou S, et al. Stem cell in neurodegenerative disorders; an emerging strategy. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 2021. https://doi.org/10.1002/jdn.10101
  13. Arrigoni C, D'Arrigo D, Rossella V, Candrian C, Albertini V, Moretti M. Umbilical cord MSCs and their secretome in the therapy of arthritic diseases: a research and industrial perspective. Cells. 2020;9(6):1343. https://doi.org/10.3390/cells9061343
  14. Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, et al. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem cell research & therapy. 2021;12(1):1-30. https://doi.org/10.1186/s13287-021-02265-1
  15. Geng Y, Chen J, Alahdal M, Chang C, Duan L, Zhu W, et al. Intra-articular injection of hUC-MSCs expressing miR-140-5p induces cartilage self-repairing in the rat osteoarthritis. Journal of bone and mineral metabolism. 2020;38(3):277-88. https://doi.org/10.1007/s00774-019-01055-3
  16. Kim SH, Ha C-W, Park Y-B, Nam E, Lee J-E, Lee H-J. Intra-articular injection of mesenchymal stem cells for clinical outcomes and cartilage repair in osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Archives of orthopaedic and trauma surgery. 2019;139(7):971-80. https://doi.org/10.1007/s00402-019-03140-8
  17. Lv X, Wang L, Zou X, Huang S. Umbilical Cord Mesenchymal Stem Cell Therapy for Regenerative Treatment of Rheumatoid Arthritis: Opportunities and Challenges. Drug design, development and therapy. 2021;15:3927. https://doi.org/10.2147/DDDT.S323107
  18. Berthelot J-M, Le Goff B, Maugars Y. Bone marrow mesenchymal stem cells in rheumatoid arthritis, spondyloarthritis, and ankylosing spondylitis: problems rather than solutions? Arthritis research & therapy. 2019;21(1):1-9. https://doi.org/10.1186/s13075-019-2014-8
  19. Zadi Heydarabad M, Baharaghdam S, Azimi A, Mohammadi H, Eivazi Ziaei J, Yazdanpanah B, et al. The role of tumor suppressor of resveratrol and prednisolone by downregulation of YKL‐40 expression in CCRF‐CEM cell line. Journal of Cellular Biochemistry. 2019;120(3):3773-9. https://doi.org/10.1002/jcb.27659
  20. Yazdanpanah S, Esmaeili S, Bashash D, Nayeri ND, Farahani ME, Gharehbaghian A. Cytotoxic and apoptogenic activity of Bryonia aspera extract on pre-B acute lymphoblastic leukemia cell lines. International Journal of Hematology-Oncology and Stem Cell Research. 2018;12(3):204.
  21. Esfini-Farahani M, Farshdousti-Hagh M, Bashash D, Esmaeili S, Dehghan-Nayeri N, Yazdanpanah S, et al. Analysis of cytotoxic activity and synergistic effect of curcuma longa extract in combination with prednisolone on acute lymphoblastic leukemia cell lines. International Journal of Cancer Management. 2017;10(11). https://doi.org/10.5812/ijcm.14174
  22. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. The Lancet. 2019;393(10182):1745-59. https://doi.org/10.1016/S0140-6736(19)30417-9
  23. Mora JC, Przkora R, Cruz-Almeida Y. Knee osteoarthritis: pathophysiology and current treatment modalities. Journal of pain research. 2018;11:2189. https://doi.org/10.2147/JPR.S154002
  24. Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthritis and Cartilage. 2020;28(3):242-8. https://doi.org/10.1016/j.joca.2020.01.002
  25. Ogawa H, Matsumoto K, Akiyama H. Functional assessment of the anterior cruciate ligament in knee osteoarthritis. Journal of Orthopaedics. 2021;23:175-9. https://doi.org/10.1016/j.jor.2020.12.035
  26. Hsia AW. Osteophyte Formation in Post-traumatic Osteoarthritis: University of California, Davis; 2019.
  27. Chow YY, Chin K-Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators of inflammation. 2020;2020. https://doi.org/10.1155/2020/8293921
  28. Griffin TM, Scanzello CR. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clinical and experimental rheumatology. 2019;37(Suppl 120):57.
  29. Jin X, Beguerie JR, Zhang W, Blizzard L, Otahal P, Jones G, et al. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(4):703-10. https://doi.org/10.1136/annrheumdis-2013-204494
  30. Kim YK, Yeo MG. Treatment with ultra-dilutions of Arnica montana increases COX-2 expression and PGE2 secretion in mouse chondrocytes. Journal of the Korea Convergence Society. 2019;10(2):331-7.
  31. Woodell‐May JE, Sommerfeld SD. Role of inflammation and the immune system in the progression of osteoarthritis. Journal of Orthopaedic Research®. 2020;38(2):253-7. https://doi.org/10.1002/jor.24457
  32. Van Den Bosch M. Inflammation in osteoarthritis: is it time to dampen the alarm (in) in this debilitating disease? Clinical & Experimental Immunology. 2019;195(2):153-66.https://doi.org/10.1111/cei.13237
  33. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. Jama. 2018;320(13):1360-72. https://doi.org/10.1001/jama.2018.13103
  34. Xie S, Li S, Chen B, Zhu Q, Xu L, Li F. Serum anti-citrullinated protein antibodies and rheumatoid factor increase the risk of rheumatoid arthritis-related interstitial lung disease: a meta-analysis. Clinical Rheumatology. 2021;40(11):4533-43. https://doi.org/10.1007/s10067-021-05808-2
  35. Zhai K-f, Duan H, Chen Y, Khan GJ, Cao W-g, Gao G-z, et al. Apoptosis effects of imperatorin on synoviocytes in rheumatoid arthritis through mitochondrial/caspase-mediated pathways. Food & function. 2018;9(4):2070-9. https://doi.org/10.1039/C7FO01748K
  36. Firestein GS, Yeo M, Zvaifler NJ. Apoptosis in rheumatoid arthritis synovium. The Journal of clinical investigation. 1995;96(3):1631-8. https://doi.org/10.1172/JCI118202
  37. Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nature Reviews Rheumatology. 2014;10(10):593-601. https://doi.org/10.1038/nrrheum.2014.80
  38. Pap T, Van Der Laan WH, Aupperle KR, Gay RE, Verheijen JH, Firestein GS, et al. Modulation of fibroblast‐mediated cartilage degradation by articular chondrocytes in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 2000;43(11):2531-6. https://doi.org/10.1002/1529-0131(200011)43:11<2531::AID-ANR21>3.0.CO;2-V
  39. Zuo J, Yin Q, Wang Y-W, Li Y, Lu L-M, Xiao Z-G, et al. Inhibition of NF-κB pathway in fibroblast-like synoviocytes by α-mangostin implicated in protective effects on joints in rats suffering from adjuvant-induced arthritis. International immunopharmacology. 2018;56:78-89. https://doi.org/10.1016/j.intimp.2018.01.016
  40. Liu Y, Mu R, Wang S, Long L, Liu X, Li R, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis research & therapy. 2010;12(6):1-13. https://doi.org/10.1186/ar3187
  41. O'Sullivan J, D'Arcy S, Barry FP, Murphy J, Coleman CM. Mesenchymal chondroprogenitor cell origin and therapeutic potential. Stem cell research & therapy. 2011;2(1):8. https://doi.org/10.1186/scrt49
  42. Fan H, Zhang C, Li J, Bi L, Qin L, Wu H, et al. Gelatin microspheres containing TGF-β3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules. 2008;9(3):927-34. https://doi.org/10.1021/bm7013203
  43. Grigull NP, Redeker JI, Schmitt B, Saller MM, Schönitzer V, Mayer-Wagner S. Chondrogenic Potential of Pellet Culture Compared to High-Density Culture on a Bacterial Cellulose Hydrogel. International journal of molecular sciences. 2020;21(8):2785. https://doi.org/10.3390/ijms21082785
  44. Watts AE, Ackerman-Yost JC, Nixon AJ. A comparison of three-dimensional culture systems to evaluate in vitro chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Tissue engineering Part A. 2013;19(19-20):2275-83. https://doi.org/10.1089/ten.tea.2012.0479
  45. Futrega K, Robey PG, Klein TJ, Crawford RW, Doran MR. A single day of TGF-β1 exposure activates chondrogenic and hypertrophic differentiation pathways in bone marrow-derived stromal cells. Communications Biology. 2021;4(1):29. https://doi.org/10.1038/s42003-020-01520-0
  46. Schmitt B, Ringe J, Häupl T, Notter M, Manz R, Burmester GR, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation; research in biological diversity. 2003;71(9-10):567-77. https://doi.org/10.1111/j.1432-0436.2003.07109003.x
  47. Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis and rheumatism. 2006;54(4):1222-32. https://doi.org/10.1002/art.21779
  48. Boeuf S, Richter W. Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem cell research & therapy. 2010;1(4):31. https://doi.org/10.1186/scrt31
  49. Fahy N, Alini M, Stoddart MJ. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. Journal of Orthopaedic Research®. 2018;36(1):52-63. https://doi.org/10.1002/jor.23670
  50. Kanichai M, Ferguson D, Prendergast PJ, Campbell VA. Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: A role for AKT and hypoxia‐inducible factor (HIF)‐1α. Journal of cellular physiology. 2008;216(3):708-15. https://doi.org/10.1002/jcp.21446
  51. Cui JH, Park K, Park SR, Min B-H. Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: an in vivo study. Tissue engineering. 2006;12(1):75-82. https://doi.org/10.1089/ten.2006.12.75
  52. Aung A, Gupta G, Majid G, Varghese S. Osteoarthritic chondrocyte-secreted morphogens induce chondrogenic differentiation of human mesenchymal stem cells. Arthritis & Rheumatism. 2011;63(1):148-58. https://doi.org/10.1002/art.30086
  53. Fahy N, De Vries-Van Melle M, Lehmann J, Wei W, Grotenhuis N, Farrell E, et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis and cartilage. 2014;22(8):1167-75. https://doi.org/10.1016/j.joca.2014.05.021
  54. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Engineering Part B: Reviews. 2014;20(6):596-608. https://doi.org/10.1089/ten.teb.2013.0771
  55. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886. https://doi.org/10.3390/cells8080886
  56. Sobacchi C, Palagano E, Villa A, Menale C. Soluble factors on stage to direct mesenchymal stem cells fate. Frontiers in bioengineering and biotechnology. 2017;5:32. https://doi.org/10.3389/fbioe.2017.00032
  57. Joel MDM, Yuan J, Wang J, Yan Y, Qian H, Zhang X, et al. MSC: immunoregulatory effects, roles on neutrophils and evolving clinical potentials. American journal of translational research. 2019;11(6):3890-904.
  58. Gao F, Chiu S, Motan D, Zhang Z, Chen L, Ji H, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease. 2016;7(1):e2062-e. https://doi.org/10.1038/cddis.2015.327
  59. Cheung TS, Galleu A, von Bonin M, Bornhäuser M, Dazzi F. Apoptotic mesenchymal stromal cells induce prostaglandin E2 in monocytes: implications for the monitoring of mesenchymal stromal cell activity. haematologica. 2019;104(10):e438. https://doi.org/10.3324/haematol.2018.214767
  60. Zhao X, Zhao Y, Sun X, Xing Y, Wang X, Yang Q. Immunomodulation of MSCs and MSC-derived extracellular vesicles in osteoarthritis. Frontiers in Bioengineering and Biotechnology. 2020;8. https://doi.org/10.3389/fbioe.2020.575057
  61. Liu Y, Mu R, Wang S, Long L, Liu X, Li R, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis research & therapy. 2010;12(6):R210. https://doi.org/10.1186/ar3187
  62. Coimbra R, Junger W, Liu F, Loomis W, Hoyt D. Hypertonic/hyperoncotic fluids reverse prostaglandin E2 (PGE2)-induced T-cell suppression. Shock (Augusta, Ga). 1995;4(1):45-9. https://doi.org/10.1097/00024382-199507000-00007
  63. Gualdoni GS, Jacobo PV, Sobarzo CM, Pérez CV, Matzkin ME, Höcht C, et al. Role of indoleamine 2, 3-dioxygenase in testicular immune-privilege. Scientific reports. 2019;9(1):1-14. https://doi.org/10.1038/s41598-019-52192-8
  64. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109(1):228-34. https://doi.org/10.1182/blood-2006-02-002246
  65. Edwards TM, Rickard NS. New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neuroscience & Biobehavioral Reviews. 2007;31(3):413-25. https://doi.org/10.1016/j.neubiorev.2006.11.001
  66. Eljarrah A, Gergues M, Pobiarzyn PW, Sandiford OA, Rameshwar P. Therapeutic Potential of Mesenchymal Stem Cells in Immune-Mediated Diseases. Stem Cells: Springer; 2019. p. 93-108. https://doi.org/10.1007/978-3-030-31206-0_5
  67. Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem cells and development. 2017;26(9):617-31. https://doi.org/10.1089/scd.2016.0349
  68. Cheng HY, Ghetu N, Wallace C, Wei F, Liao S. The impact of mesenchymal stem cell source on proliferation, differentiation, immunomodulation and therapeutic efficacy. J Stem Cell Res Ther. 2014;4(10):1-8.
  69. Lee JM, Jung J, Lee H-J, Jeong SJ, Cho KJ, Hwang S-G, et al. Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. International immunopharmacology. 2012;13(2):219-24. https://doi.org/10.1016/j.intimp.2012.03.024
  70. Fazekasova H, Lechler R, Langford K, Lombardi G. Placenta‐derived MSCs are partially immunogenic and less immunomodulatory than bone marrow‐derived MSCs. Journal of tissue engineering and regenerative medicine. 2011;5(9):684-94. https://doi.org/10.1002/term.362
  71. Pedrosa M, Gomes J, Laranjeira P, Duarte C, Pedreiro S, Antunes B, et al. Immunomodulatory effect of human bone marrow‐derived mesenchymal stromal/stem cells on peripheral blood T cells from rheumatoid arthritis patients. Journal of tissue engineering and regenerative medicine. 2020;14(1):16-28. https://doi.org/10.1002/term.2958
  72. Liu R, Li X, Zhang Z, Zhou M, Sun Y, Su D, et al. Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Scientific reports. 2015;5(1):1-11. https://doi.org/10.1038/srep12777
  73. Wei J, Ouyang X, Tang Y, Li H, Wang B, Ye Y, et al. ER-stressed MSC displayed more effective immunomodulation in RA CD4+ CXCR5+ ICOS+ follicular helper-like T cells through higher PGE2 binding with EP2/EP4. Modern rheumatology. 2020;30(3):509-16. https://doi.org/10.1080/14397595.2019.1651446
  74. Sun Y, Deng W, Geng L, Zhang L, Liu R, Chen W, et al. Mesenchymal stem cells from patients with rheumatoid arthritis display impaired function in inhibiting Th17 cells. Journal of immunology research. 2015;2015. https://doi.org/10.1155/2015/284215
  75. Polykratis A, Martens A, Eren RO, Shirasaki Y, Yamagishi M, Yamaguchi Y, et al. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nature cell biology. 2019;21(6):731-42. https://doi.org/10.1038/s41556-019-0324-3
  76. Ma D, Xu K, Zhang G, Liu Y, Gao J, Tian M, et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. International immunopharmacology. 2019;74:105687. https://doi.org/10.1016/j.intimp.2019.105687
  77. Shin T-H, Kim H-S, Kang T-W, Lee B-C, Lee H-Y, Kim Y-J, et al. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell death & disease. 2016;7(12):e2524-e. https://doi.org/10.1038/cddis.2016.442
  78. Guo C, Fu R, Wang S, Huang Y, Li X, Zhou M, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clinical & Experimental Immunology. 2018;194(2):231-43. https://doi.org/10.1111/cei.13167
  79. Baeuerle PA, Baichwal VR. NF-kB as a frequent target for immunosuppressive and anti-inflammatory molecules. Advances in immunology. 1997;65:111-38. https://doi.org/10.1016/S0065-2776(08)60742-7
  80. Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. The Journal of clinical investigation. 2001;107(1):7-11. https://doi.org/10.1172/JCI11830
  81. Yan X, Cen Y, Wang Q. Mesenchymal stem cells alleviate experimental rheumatoid arthritis through microRNA-regulated IκB expression. Scientific reports. 2016;6(1):1-12. https://doi.org/10.1038/srep28915
  82. Liu W, Wu Y-H, Zhang L, Xue B, Wang Y, Liu B, et al. MicroRNA-146a suppresses rheumatoid arthritis fibroblast-like synoviocytes proliferation and inflammatory responses by inhibiting the TLR4/NF-kB signaling. Oncotarget. 2018;9(35):23944. https://doi.org/10.18632/oncotarget.24050
  83. Haikal SM, Abdeltawab NF, Rashed LA, El-Galil A, Tarek I, Elmalt HA, et al. Combination therapy of mesenchymal stromal cells and interleukin-4 attenuates rheumatoid arthritis in a collagen-induced murine model. Cells. 2019;8(8):823. https://doi.org/10.3390/cells8080823
  84. Ghaffary EM, Froushani SMA. Immunomodulatory benefits of mesenchymal stem cells treated with caffeine in adjuvant-induced arthritis. Life sciences. 2020;246:117420. https://doi.org/10.1016/j.lfs.2020.117420
  85. Yamagata K, Nakayamada S, Zhang T, Zhang X, Tanaka Y. Soluble IL-6R promotes chondrogenic differentiation of mesenchymal stem cells to enhance the repair of articular cartilage defects using a rat model for rheumatoid arthritis. Clinical and experimental rheumatology. 2019;38(4):670-9. https://doi.org/10.1186/s41232-018-0061-1
  86. Sonomoto K, Yamaoka K, Kaneko H, Yamagata K, Sakata K, Zhang X, et al. Spontaneous differentiation of human mesenchymal stem cells on poly-lactic-co-glycolic acid nano-fiber scaffold. PloS one. 2016;11(4):e0153231. https://doi.org/10.1371/journal.pone.0153231
  87. Hu J, Li H, Chi G, Yang Z, Zhao Y, Liu W, et al. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis. International journal of clinical and experimental medicine. 2015;8(1):706.
  88. Phinney DG, , Pittenger MF. Concise Review: MSC‐Derived Exosomes for Cell‐Free Therapy. Stem Cells. 2017;35(4):851-8. https://doi.org/10.1002/stem.2575
  89. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology. 2013;200(4):373-83. https://doi.org/10.1083/jcb.201211138
  90. Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic Potential of Mesenchymal Cell-Derived miRNA-150-5p-Expressing Exosomes in Rheumatoid Arthritis Mediated by the Modulation of MMP14 and VEGF. Journal of immunology (Baltimore, Md : 1950). 2018;201(8):2472-82. https://doi.org/10.4049/jimmunol.1800304
  91. Tavasolian F, Hosseini AZ, Soudi S, Naderi M. miRNA-146a Improves Immunomodulatory Effects of MSC-derived Exosomes in Rheumatoid Arthritis. Current gene therapy. 2020;20(4):297-312. https://doi.org/10.2174/1566523220666200916120708
  92. Meng Q, Qiu B. Exosomal MicroRNA-320a Derived From Mesenchymal Stem Cells Regulates Rheumatoid Arthritis Fibroblast-Like Synoviocyte Activation by Suppressing CXCL9 Expression. Frontiers in physiology. 2020;11:441. https://doi.org/10.3389/fphys.2020.00441
  93. Su Y, Liu Y, Ma C, Guan C, Ma X, Meng S. Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway. Journal of orthopaedic surgery and research. 2021;16(1):116. https://doi.org/10.1186/s13018-021-02248-1
  94. Tsujimaru K, Takanashi M, Sudo K, Ishikawa A, Mineo S, Ueda S, et al. Extracellular microvesicles that originated adipose tissue derived mesenchymal stem cells have the potential ability to improve rheumatoid arthritis on mice. Regenerative therapy. 2020;15:305-11. https://doi.org/10.1016/j.reth.2020.08.004
  95. Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine & growth factor reviews. 2002;13(4-5):323-40. https://doi.org/10.1016/S1359-6101(02)00020-5
  96. Fernandez-Pernas P, Rodríguez-Lesende I, de la Fuente A, Mateos J, Fuentes I, De Toro J, et al. CD105+-mesenchymal stem cells migrate into osteoarthritis joint: An animal model. PloS one. 2017;12(11):e0188072. https://doi.org/10.1371/journal.pone.0188072
  97. Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. The Knee. 2011;18(2):71-5. https://doi.org/10.1016/j.knee.2010.03.001
  98. Cui YP, Cao YP, Liu H, Yang X, Meng ZC, Wang R. [Bone marrow mesenchymal stem cells in Sprague-Dawley rat model of osteoarthritis]. Beijing da xue xue bao Yi xue ban = Journal of Peking University Health sciences. 2015;47(2):211-8.
  99. Yun S, Ku SK, Kwon YS. Adipose-derived mesenchymal stem cells and platelet-rich plasma synergistically ameliorate the surgical-induced osteoarthritis in Beagle dogs. Journal of orthopaedic surgery and research. 2016;11:9. https://doi.org/10.1186/s13018-016-0342-9
  100. Kim H, Yang G, Park J, Choi J, Kang E, Lee BK. Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Scientific reports. 2019;9(1):13854. https://doi.org/10.1038/s41598-019-50435-2
  101. Ichiseki T, Shimazaki M, Ueda Y, Ueda S, Tsuchiya M, Souma D, et al. Intraarticularly-Injected Mesenchymal Stem Cells Stimulate Anti-Inflammatory Molecules and Inhibit Pain Related Protein and Chondrolytic Enzymes in a Monoiodoacetate-Induced Rat Arthritis Model. International journal of molecular sciences. 2018;19(1). https://doi.org/10.3390/ijms19010203
  102. Apte SS. Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. The Biochemical journal. 2016;473(1):e1-e4. https://doi.org/10.1042/BJ20151072
  103. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma H-L, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434(7033):644-8. https://doi.org/10.1038/nature03369
  104. Xia Q, Zhu S, Wu Y, Wang J, Cai Y, Chen P, et al. Intra‐articular transplantation of atsttrin‐transduced mesenchymal stem cells ameliorate osteoarthritis development. Stem cells translational medicine. 2015;4(5):523-31. https://doi.org/10.5966/sctm.2014-0200
  105. Barrachina L, Remacha AR, Romero A, Vitoria A, Albareda J, Prades M, et al. Assessment of effectiveness and safety of repeat administration of proinflammatory primed allogeneic mesenchymal stem cells in an equine model of chemically induced osteoarthritis. BMC veterinary research. 2018;14(1):1-17. https://doi.org/10.1186/s12917-018-1556-3
  106. Wang X-d, Wan X-c, Liu A-f, Li R, Wei Q. Effects of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication on cytokine levels in animal models of knee osteoarthritis. International orthopaedics. 2021;45(2):381-90. https://doi.org/10.1007/s00264-020-04584-z
  107. Stancker TG, Vieira SS, Serra AJ, do Nascimento Lima R, dos Santos Feliciano R, Silva JA, et al. Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers in medical science. 2018;33(5):1073-84. https://doi.org/10.1007/s10103-018-2466-0
  108. Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Engineering Part C: Methods. 2009;15(4):647-58. https://doi.org/10.1089/ten.tec.2008.0569
  109. Tseng WJ, Huang S-W, Fang C-H, Hsu L-T, Chen C-Y, Shen H-H, et al. Treatment of osteoarthritis with collagen-based scaffold: A porcine animal model with xenograft mesenchymal stem cells. Histology and histopathology. 2018;33(12):1271-86.
  110. Khatab S, van Osch GJ, Kops N, Bastiaansen-Jenniskens YM, Bos PK, Verhaar JA, et al. Mesenchymal stem cell secretome reduces pain and prevents cartilage damage in a murine osteoarthritis model. European cells & materials. 2018;36:218-30. https://doi.org/10.22203/eCM.v036a16
  111. Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials. 2019;206:87-100. https://doi.org/10.1016/j.biomaterials.2019.03.022
  112. Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem cell research & therapy. 2017;8(1):189. https://doi.org/10.1186/s13287-017-0632-0
  113. Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem cell research & therapy. 2018;9(1):247. https://doi.org/10.1186/s13287-018-1004-0
  114. Jin Z, Ren J, Qi S. Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. International immunopharmacology. 2020;78:105946. https://doi.org/10.1016/j.intimp.2019.105946
  115. Mishima S, Kashiwakura JI, Toyoshima S, Sasaki-Sakamoto T, Sano Y, Nakanishi K, et al. Higher PGD(2) production by synovial mast cells from rheumatoid arthritis patients compared with osteoarthritis patients via miR-199a-3p/prostaglandin synthetase 2 axis. Scientific reports. 2021;11(1):5738. https://doi.org/10.1038/s41598-021-84963-7
  116. Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell and tissue research. 2020;381(1):99-114. https://doi.org/10.1007/s00441-020-03193-x
  117. Ren K, Tang J, Jiang X, Sun H, Nong L, Shen N, et al. Periodic Mechanical Stress Stimulates GIT1-Dependent Mitogenic Signals in Rat Chondrocytes Through ERK1/2 Activity. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018;50(3):1015-28. https://doi.org/10.1159/000494513
  118. Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle. 2018;17(21-22):2411-22. https://doi.org/10.1080/15384101.2018.1526603
  119. Wen C, Lin L, Zou R, Lin F, Liu Y. Mesenchymal stem cell-derived exosome mediated long non-coding RNA KLF3-AS1 represses autophagy and apoptosis of chondrocytes in osteoarthritis. Cell Cycle. 2022;21(3):289-303. https://doi.org/10.1080/15384101.2021.2019411
  120. Wang R, Xu B, Xu H. TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle. 2018;17(24):2756-65. https://doi.org/10.1080/15384101.2018.1556063
  121. Liu C, Li Y, Yang Z, Zhou Z, Lou Z, Zhang Q. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair. Nanomedicine (London, England). 2020;15(3):273-88. https://doi.org/10.2217/nnm-2019-0208
  122. Shao J, Zhu J, Chen Y, Fu Q, Li L, Ding Z, et al. Exosomes from Kartogenin-Pretreated Infrapatellar Fat Pad Mesenchymal Stem Cells Enhance Chondrocyte Anabolism and Articular Cartilage Regeneration. Stem Cells Int. 2021;2021:6624874. https://doi.org/10.1155/2021/6624874
  123. Li F, Xu Z, Xie Z, Sun X, Li C, Chen Y, et al. Adipose mesenchymal stem cells-derived exosomes alleviate osteoarthritis by transporting microRNA -376c-3p and targeting the WNT-beta-catenin signaling axis. Apoptosis : an international journal on programmed cell death. 2022.
  124. Park EH, Lim HS, Lee S, Roh K, Seo KW, Kang KS, et al. Intravenous Infusion of Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Rheumatoid Arthritis: A Phase Ia Clinical Trial. Stem cells translational medicine. 2018;7(9):636-42. https://doi.org/10.1002/sctm.18-0031
  125. Ghoryani M, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. The Sufficient Immunoregulatory Effect of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation on Regulatory T Cells in Patients with Refractory Rheumatoid Arthritis. Journal of immunology research. 2020;2020:3562753. https://doi.org/10.1155/2020/3562753
  126. Ghoryani M, Shariati-Sarabi Z, Tavakkol-Afshari J, Ghasemi A, Poursamimi J, Mohammadi M. Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019;109:1834-40. https://doi.org/10.1016/j.biopha.2018.11.056
  127. Qi T, Gao H, Dang Y, Huang S, Peng M. Cervus and cucumis peptides combined umbilical cord mesenchymal stem cells therapy for rheumatoid arthritis. Medicine (Baltimore). 2020;99(28):e21222. https://doi.org/10.1097/MD.0000000000021222
  128. Shadmanfar S, Labibzadeh N, Emadedin M, Jaroughi N, Azimian V, Mardpour S, et al. Intra-articular knee implantation of autologous bone marrow-derived mesenchymal stromal cells in rheumatoid arthritis patients with knee involvement: Results of a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy. 2018;20(4):499-506. https://doi.org/10.1016/j.jcyt.2017.12.009
  129. Matas J, Orrego M, Amenabar D, Infante C, Tapia‐Limonchi R, Cadiz MI, et al. Umbilical cord‐derived mesenchymal stromal cells (MSCs) for knee osteoarthritis: Repeated MSC dosing is superior to a single MSC dose and to hyaluronic acid in a controlled randomized phase I/II trial. Stem cells translational medicine. 2019;8(3):215-24. https://doi.org/10.1002/sctm.18-0053
  130. Dilogo IH, Canintika AF, Hanitya AL, Pawitan JA, Liem IK, Pandelaki J. Umbilical cord-derived mesenchymal stem cells for treating osteoarthritis of the knee: a single-arm, open-label study. European Journal of Orthopaedic Surgery & Traumatology. 2020;30(5):799-807. https://doi.org/10.1007/s00590-020-02630-5
  131. Jo CH, Chai JW, Jeong EC, Oh S, Shin JS, Shim H, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. The American journal of sports medicine. 2017;45(12):2774-83. https://doi.org/10.1177/0363546517716641
  132. Bastos R, Mathias M, Andrade R, Amaral RJ, Schott V, Balduino A, et al. Intra-articular injection of culture-expanded mesenchymal stem cells with or without addition of platelet-rich plasma is effective in decreasing pain and symptoms in knee osteoarthritis: a controlled, double-blind clinical trial. Knee Surgery, Sports Traumatology, Arthroscopy. 2020;28(6):1989-99. https://doi.org/10.1007/s00167-019-05732-8
  133. Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Núñez-Córdoba JM, López-Elío S, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: long-term follow up of a multicenter randomized controlled clinical trial (phase I/II). Journal of translational medicine. 2018;16(1):1-5. https://doi.org/10.1186/s12967-018-1591-7
  134. Chahal J, Gómez‐Aristizábal A, Shestopaloff K, Bhatt S, Chaboureau A, Fazio A, et al. Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem cells translational medicine. 2019;8(8):746-57. https://doi.org/10.1002/sctm.18-0183
  135. Wong KL, Lee KBL, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 Years' follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2013;29(12):2020-8. https://doi.org/10.1016/j.arthro.2013.09.074
  136. Hernigou P, Bouthors C, Bastard C, Lachaniette CHF, Rouard H, Dubory A. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: what better postpone knee arthroplasty at fifteen years? A randomized study. International orthopaedics. 2021;45(2):391-9. https://doi.org/10.1007/s00264-020-04687-7
  137. Hernigou P, Delambre J, Quiennec S, Poignard A. Human bone marrow mesenchymal stem cell injection in subchondral lesions of knee osteoarthritis: a prospective randomized study versus contralateral arthroplasty at a mean fifteen year follow-up. International orthopaedics. 2021;45(2):365-73. https://doi.org/10.1007/s00264-020-04571-4
  138. Lee K, Park N, Jung H, Rim YA, Nam Y, Lee J, et al. Mesenchymal stem cells ameliorate experimental arthritis via expression of interleukin-1 receptor antagonist. PloS one. 2018;13(2):e0193086. https://doi.org/10.1371/journal.pone.0193086
  139. Li F, Li X, Liu G, Gao C, Li X. Bone Marrow Mesenchymal Stem Cells Decrease the Expression of RANKL in Collagen-Induced Arthritis Rats via Reducing the Levels of IL-22. Journal of immunology research. 2019;2019:8459281. https://doi.org/10.1155/2019/8459281
  140. Ma D, Xu K, Zhang G, Liu Y, Gao J, Tian M, et al. Immunomodulatory effect of human umbilical cord mesenchymal stem cells on T lymphocytes in rheumatoid arthritis. International immunopharmacology. 2019;74:105687. https://doi.org/10.1016/j.intimp.2019.105687
  141. Abd-Elhalem SS, Haggag NZ, El-Shinnawy NA. Bone marrow mesenchymal stem cells suppress IL-9 in adjuvant-induced arthritis. Autoimmunity. 2018;51(1):25-34. https://doi.org/10.1080/08916934.2018.1428956
  142. Haikal SM, Abdeltawab NF, Rashed LA, Abd El-Galil TI, Elmalt HA, Amin MA. Combination Therapy of Mesenchymal Stromal Cells and Interleukin-4 Attenuates Rheumatoid Arthritis in a Collagen-Induced Murine Model. Cells. 2019;8(8):823. https://doi.org/10.3390/cells8080823
  143. Nazemian V, Manaheji H, Sharifi AM, Zaringhalam J. Long term treatment by mesenchymal stem cells conditioned medium modulates cellular, molecular and behavioral aspects of adjuvant-induced arthritis. Cellular and molecular biology (Noisy-le-Grand, France). 2018;64(1):19-26. https://doi.org/10.14715/cmb/2018.64.2.5
  144. Tseng WJ, Huang SW, Fang CH, Hsu LT, Chen CY, Shen HH, et al. Treatment of osteoarthritis with collagen-based scaffold: A porcine animal model with xenograft mesenchymal stem cells. Histology and histopathology. 2018;33(12):1271-86.
  145. Wu CC, Liu FL, Sytwu HK, Tsai CY, Chang DM. CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells for treating collagen-induced arthritis in mice. Stem cell research & therapy. 2016;7:23. https://doi.org/10.1186/s13287-016-0285-4
  146. Yan X, Cen Y, Wang Q. Mesenchymal stem cells alleviate experimental rheumatoid arthritis through microRNA-regulated IκB expression. Scientific reports. 2016;6:28915. https://doi.org/10.1038/srep28915
  147. Liu R, Li X, Zhang Z, Zhou M, Sun Y, Su D, et al. Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Scientific reports. 2015;5:12777. https://doi.org/10.1038/srep12777
  148. Gu Y, Shi S. Transplantation of gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis. Arthritis Res Ther. 2016;18(1):262. https://doi.org/10.1186/s13075-016-1160-5
  149. Garimella MG, Kour S, Piprode V, Mittal M, Kumar A, Rani L, et al. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis. Journal of immunology (Baltimore, Md : 1950). 2015;195(11):5136-48. https://doi.org/10.4049/jimmunol.1500332
  150. Gonzalo-Gil E, Pérez-Lorenzo MJ, Galindo M, Díaz de la Guardia R, López-Millán B, Bueno C, et al. Human embryonic stem cell-derived mesenchymal stromal cells ameliorate collagen-induced arthritis by inducing host-derived indoleamine 2,3 dioxygenase. Arthritis Res Ther. 2016;18:77. https://doi.org/10.1186/s13075-016-0979-0
  151. Stancker TG, Vieira SS, Serra AJ, do Nascimento Lima R, Dos Santos Feliciano R, Silva JA, Jr., et al. Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers in medical science. 2018;33(5):1073-84. https://doi.org/10.1007/s10103-018-2466-0
  152. Tao S-C, Yuan T, Zhang Y-L, Yin W-J, Guo S-C, Zhang C-Q. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 2017;7(1):180. https://doi.org/10.7150/thno.17133
  153. Neybecker P, Henrionnet C, Pape E, Mainard D, Galois L, Loeuille D, et al. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem cell research & therapy. 2018;9(1):329. https://doi.org/10.1186/s13287-018-1071-2
  154. Grigolo B, Lisignoli G, Desando G, Cavallo C, Marconi E, Tschon M, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue engineering Part C, Methods. 2009;15(4):647-58. https://doi.org/10.1089/ten.tec.2008.0569
  155. McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nature Reviews Rheumatology. 2017;13(12):719-30. https://doi.org/10.1038/nrrheum.2017.182
  156. Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2009;27(12):1675-80. https://doi.org/10.1002/jor.20933
  157. Xia Q, Zhu S, Wu Y, Wang J, Cai Y, Chen P, et al. Intra-articular transplantation of atsttrin-transduced mesenchymal stem cells ameliorate osteoarthritis development. Stem cells translational medicine. 2015;4(5):523-31. https://doi.org/10.5966/sctm.2014-0200
  158. Chen W, Sun Y, Gu X, Hao Y, Liu X, Lin J, et al. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy. J Tissue Eng Regen Med. 2019;13(9):1618-28. https://doi.org/10.1002/term.2916
  159. Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem cell research & therapy. 2017;8(1):1-13. https://doi.org/10.1186/s13287-017-0632-0
  160. Martel-Pelletier J, Pelletier JP, Fahmi H. Cyclooxygenase-2 and prostaglandins in articular tissues. Seminars in arthritis and rheumatism. 2003;33(3):155-67. https://doi.org/10.1016/S0049-0172(03)00134-3
  161. Song F, Tang J, Geng R, Hu H, Zhu C, Cui W, et al. Comparison of the efficacy of bone marrow mononuclear cells and bone mesenchymal stem cells in the treatment of osteoarthritis in a sheep model. International journal of clinical and experimental pathology. 2014;7(4):1415-26.