The most common nanostructures as a contrast agent in medical imaging

Document Type : Review Paper


1 Department of Radiology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Pharmacy, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran

3 School of Medicine, Shahid Beheshti Medical University, Tehran, Iran

4 School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran

5 Advanced Diagnostic and Interventional Radiology Research Center (ADIR),Tehran University of Medical Sciences, Tehran, Iran

6 Department of Radiology, Cancer institute, Tehran University of Medical Sciences, Tehran, Iran

7 Department of Psychiatry, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran


The differentiation of certain structures from nearby tissues during medical imaging requires a sufficient amount of signals from the targeted area. The limitations of conventional contrast agents prevent the possibility of quick and accurate diagnosis of some cases and cause many problems for the patients and society. However, most of these restrictions can be surpassed through the unique physico-chemical characteristic nanotechnologyology and nano structures. Nanocarriers are abled to take the role of contrast agents or even provide the efficient delivery of these agents as carriers, while the capability of nanostructures in facilitating the simultaneous transportation of diagnostic and therapeutic agents is also undeniable. Thanks to the modern application of nanotechnology, it is possible to perform the targeted distribution of diagnostic and therapeutic agents to the desired locations. The status of in vivo surveillance and targeting efficiency can be improved by exploiting the potential benefits of nanoparticles and therefore, it is quiet expected to witness interesting characteristics from nanocarrier imaging agents for the diagnosis and staging of different diseases. This work presents a summary on the most common contrast agent nanostructures in medical imaging.


Main Subjects

  1. 1. He, W., K. Ai, and L. Lu, Nanoparticulate X-ray CT contrast agents. Science China Chemistry, 2015. 58(5): p. 753-760.
    2. Faulkner, S. and N.J. Long, Radiopharmaceuticals for imaging and therapy. Dalton Transactions, 2011. 40(23): p. 6067-6067.
    3. Huang, Y., et al., Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012. 4(20): p. 6135-6149.
    4. James, M.L. and S.S. Gambhir, A molecular imaging primer: modalities, imaging agents, and applications. Physiological reviews, 2012. 92(2): p. 897-965.
    5. Kherlopian, A.R., et al., A review of imaging techniques for systems biology. BMC systems biology, 2008. 2(1): p. 1-18.          
    6. Massoud, T.F. and S.S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & development, 2003. 17(5): p. 545-580.            
    7. Rudin, M. and R. Weissleder, Molecular imaging in drug discovery and development. Nature reviews Drug discovery, 2003. 2(2): p. 123-131.             
    8. Cormode, D.P., et al., Modified natural nanoparticles as contrast agents for medical imaging. Advanced drug delivery reviews, 2010. 62(3): p. 329-338.   
    9. Bremer, C., V. Ntziachristos, and R. Weissleder, Optical-based molecular imaging: contrast agents and potential medical applications. European radiology, 2003. 13(2): p. 231-243.                    
    10. Du, Y., et al., Design of superparamagnetic nanoparticles for magnetic particle imaging (MPI). International journal of molecular sciences, 2013. 14(9): p. 18682-18710.     

    1. Lee, S.H., et al., Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014. 6(2): p. 196-209.
      12. Razi, M., et al., The peep of nanotechnology in reproductive medicine: a mini-review. International Journal of Medical Laboratory, 2015. 2(1): p. 1-15.
      13. Krupinski, E.A. and Y. Jiang, Anniversary paper: evaluation of medical imaging systems. Medical physics, 2008. 35(2): p. 645-659.            
      14. Vivero-Escoto, J.L., R.C. Huxford-Phillips, and W. Lin, Silica-based nanoprobes for biomedical imaging and theranostic applications. Chemical Society Reviews, 2012. 41(7): p. 2673-2685.                   
      15. Janib, S.M., A.S. Moses, and J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Advanced drug delivery reviews, 2010. 62(11): p. 1052-1063. 
      16. Gunasekera, U.A., Q.A. Pankhurst, and M. Douek, Imaging applications of nanotechnology in cancer. Targeted Oncology, 2009. 4(3): p. 169-181.   
      17. Sanvicens, N. and M.P. Marco, Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends in biotechnology, 2008. 26(8): p. 425-433.             
      18. Morais, M.G.d., et al., Biological applications of nanobiotechnology. Journal of nanoscience and nanotechnology, 2014. 14(1): p. 1007-1017.        
      19. Wang, X., et al., Application of nanotechnology in cancer therapy and imaging. CA: a cancer journal for clinicians, 2008. 58(2): p. 97-110.   
      20. Sajja, H.K., et al., Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Current drug discovery technologies, 2009. 6(1): p. 43-51.   
      21. Yang, X., et al., cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials, 2011. 32(17): p. 4151-4160.            
      22. Frangioni, J.V., et al., Sentinel lymph node mapping with type-II quantum dots, in Quantum Dots. 2007, Springer. p. 147-159.     
      23. Sun, C., J.S. Lee, and M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews, 2008. 60(11): p. 1252-1265.                
      24. Surendiran, A., et al., Novel applications of nanotechnology in medicine. Indian Journal of Medical Research, 2009. 130(6).                   
      25. Fountaine, T.J., et al., Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Modern Pathology, 2006. 19(9): p. 1181-1191.     
      26. Farajzadeh, R., et al., Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artificial cells, nanomedicine, and biotechnology, 2018. 46(5): p. 917-925.               
      27. Mohammadian, F., et al., Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iranian journal of cancer prevention, 2016. 9(4).           
      28. Mohammadian, F., et al., Upregulation of Mir-34a in AGS gastric cancer cells by a PLGA-PEG-PLGA chrysin nano formulation. Asian Pacific Journal of Cancer Prevention, 2016. 16(18): p. 8259-8263.                
      29. Kumar, R., et al., Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS nano, 2008. 2(3): p. 449-456.             
      30. Nagasaki, Y., et al., Novel Molecular Recognition via Fluorescent Resonance Energy Transfer Using a Biotin− PEG/Polyamine Stabilized CdS Quantum Dot. Langmuir, 2004. 20(15): p. 6396-6400.                 
      31. Rhyner, M.N., et al., Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. 2006.       
      32. Smith, A.M., et al., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced drug delivery reviews, 2008. 60(11): p. 1226-1240.                
      33. Baker, M., Nanotechnology imaging probes: smaller and more stable. Nature methods, 2010. 7(12): p. 957-962.          
      34. Bentolila, L.A., Y. Ebenstein, and S. Weiss, Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine, 2009. 50(4): p. 493-496.                    
      35. Gao, X., et al., In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology, 2004. 22(8): p. 969-976.         
      36. Cai, W. and H. Hong, In a "nutshell": intrinsically radio-labeled quantum dots. American Journal of Nuclear Medicine and Molecular Imaging, 2012. 2(2): p. 136.            
      37. Smith, B.R., et al., Real-time intravital imaging of RGD− quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano letters, 2008. 8(9): p. 2599-2606.   
      38. Cai, W., et al., Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. Journal of Nuclear Medicine, 2007. 48(11): p. 1862-1870.               
      39. Schipper, M.L., et al., microPET-based biodistribution of quantum dots in living mice. Journal of Nuclear Medicine, 2007. 48(9): p. 1511-1518.       
      40. Hu, K., et al., In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. Journal of Nuclear Medicine, 2015. 56(8): p. 1278-1284.                 
      41. Kim, S., et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature biotechnology, 2004. 22(1): p. 93-97.                  
      42. So, M.-K., et al., Self-illuminating quantum dot conjugates for in vivo imaging. Nature biotechnology, 2006. 24(3): p. 339-343.   
      43. Voura, E.B., et al., Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature medicine, 2004. 10(9): p. 993-998.         
      44. Stroh, M., et al., Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature medicine, 2005. 11(6): p. 678-682.           
      45. Schipper, M.L., et al., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small, 2009. 5(1): p. 126-134.       
      46. Liu, W., et al., Compact biocompatible quantum dots functionalized for cellular imaging. Journal of the American Chemical Society, 2008. 130(4): p. 1274-1284.                
      47. Liu, W., et al., Compact cysteine-coated CdSe (ZnCdS) quantum dots for in vivo applications. Journal of the American Chemical Society, 2007. 129(47): p. 14530-14531.          
      48. Lovrić, J., et al., Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chemistry & biology, 2005. 12(11): p. 1227-1234.                   
      49. Naha, P.C., P. Chhour, and D.P. Cormode, Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicology in Vitro, 2015. 29(7): p. 1445-1453.               
      50. Thakor, A., et al., Gold nanoparticles: a revival in precious metal administration to patients. Nano letters, 2011. 11(10): p. 4029-4036.                   
      51. Eck, W., et al., PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS nano, 2008. 2(11): p. 2263-2272.                   
      52. Li, X., et al., Nanostructured scaffolds for bone tissue engineering. Journal of biomedical materials research Part A, 2013. 101(8): p. 2424-2435.                  
      53. Cheheltani, R., et al., Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials, 2016. 102: p. 87-97.         
      54. Banstola, A., et al., Current applications of gold nanoparticles for medical imaging and as treatment agents for managing pancreatic cancer. Macromolecular Research, 2018. 26(11): p. 955-964.                 
      55. Lu, W., Xiong c., Zhang G., Huang Q., Zhang r., Zhang JZ, Li c. clin. cancer res, 2009. 15: p. 876-886.              
      56. Lu, W., et al., II, Huang Q, Gelovani JG and Li C: Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res, 2010. 70(8): p. 3177-3188.     
      57. Liu, L., N. Xia, and J. Wang, Potential applications of SPR in early diagnosis and progression of Alzheimer's disease. Rsc Advances, 2012. 2(6): p. 2200-2204.             
      58. Souto, D.E., et al., A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases. Talanta, 2019. 205: p. 120122.                  
      59. England, C.G., et al., Molecular imaging of pancreatic cancer with antibodies. Molecular pharmaceutics, 2016. 13(1): p. 8-24.       
      60. Guo, Y., et al., Photothermal ablation of pancreatic cancer cells with hybrid iron-oxide core gold-shell nanoparticles. International journal of nanomedicine, 2013: p. 3437-3446.            
      61. Hainfeld, J., et al., Gold nanoparticles: a new X-ray contrast agent. The British journal of radiology, 2006. 79(939): p. 248-253.              
      62. Houghton, J.L., et al., Site-specifically labeled CA19. 9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proceedings of the National Academy of Sciences, 2015. 112(52): p. 15850-15855.       
      63. Debouttière, P.J., et al., Design of gold nanoparticles for magnetic resonance imaging. Advanced Functional Materials, 2006. 16(18): p. 2330-2339.          
      64. Lee, S.B., et al., Engineering of radioiodine-labeled gold core-shell nanoparticles as efficient nuclear medicine imaging agents for trafficking of dendritic cells. ACS applied materials & interfaces, 2017. 9(10): p. 8480-8489.          
      65. Kim, K.S., et al., Gold half-shell coated hyaluronic acid-doxorubicin conjugate micelles for theranostic applications. Macromolecular Research, 2012. 20(3): p. 277-282.             
      66. Nebu, J., et al., Erlotinib conjugated gold nanocluster enveloped magnetic iron oxide nanoparticles-A targeted probe for imaging pancreatic cancer cells. Sensors and Actuators B: Chemical, 2018. 257: p. 1035-1043.       
      67. Mallidi, S., et al., Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano letters, 2009. 9(8): p. 2825-2831.               
      68. Khanal, A., et al., Detection of pancreatic tumors in vivo with tumor targeted mesoporous silica-coated gold nanorods by multispectral optoacoustic tomography. Nano Res., 2015. 8: p. 3864-3877.            
      69. Holbrook, R.J., et al., Gd (III)-dithiolane gold nanoparticles for T 1-weighted magnetic resonance imaging of the pancreas. Nano letters, 2016. 16(5): p. 3202-3209.          
      70. Hayashi, K., et al., Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core-shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors. Chemical communications, 2013. 49(46): p. 5334-5336.                  
      71. Ankri, R., et al., Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano letters, 2014. 14(5): p. 2681-2687.                    
      72. Popovtzer, R., et al., Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano letters, 2008. 8(12): p. 4593-4596.         
      73. Jung, S., et al., Dynamic in vivo X-ray fluorescence imaging of gold in living mice exposed to gold nanoparticles. IEEE transactions on medical imaging, 2019. 39(2): p. 526-533. 
      74. Torrisi, L., N. Restuccia, and I. Paterniti, Gold nanoparticles by laser ablation for X-ray imaging and protontherapy improvements. Recent patents on Nanotechnology, 2018. 12(1): p. 59-69.                   
      75. Agarwal, A., et al., Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. Journal of applied physics, 2007. 102(6): p. 064701.       
      76. Li, W., et al. Monte Carlo simulations of dose enhancement around gold nanoparticles used as x-ray imaging contrast agents and radiosensitizers. in Medical Imaging 2014: Physics of Medical Imaging. 2014. SPIE.  
      77. Eck, W., et al., Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice. Nano letters, 2010. 10(7): p. 2318-2322.                  
      78. Kouhbanani, M.A.J., et al., Green synthesis of iron oxide nanoparticles using Artemisia vulgaris leaf extract and their application as a heterogeneous Fenton-like catalyst for the degradation of methyl orange. Materials Research Express, 2018. 5(11): p. 115013.      
      79. Kouhbanani, M.A.J., et al., One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019. 10(1): p. 015007.              
      80. Laurent, S. and M. Mahmoudi, Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. International journal of molecular epidemiology and genetics, 2011. 2(4): p. 367.                
      81. Thorek, D.L., et al., Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of biomedical engineering, 2006. 34(1): p. 23-38.  
      82. Yu, M.K., et al., Drug‐loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie International Edition, 2008. 47(29): p. 5362-5365.   
      83. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS chemical neuroscience, 2011. 2(3): p. 118-140.       
      84. Mahmoudi, M., A. Simchi, and M. Imani, Recent advances in surface engineering of superparamagnetic iron oxide nanoparticles for biomedical applications. Journal of the Iranian Chemical Society, 2010. 7(2): p. S1-S27.                
      85. Mahmoudi, M., et al., Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. The Journal of Physical Chemistry B, 2008. 112(46): p. 14470-14481.                   
      86. Gupta, A.K., et al., Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. 2007.               
      87. Lee, H., et al., Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. Journal of the American Chemical Society, 2007. 129(42): p. 12739-12745. 
      88. Kellar, K.E., et al., NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive‐contrast MR angiography. Journal of Magnetic Resonance Imaging, 2000. 11(5): p. 488-494.<488::AID-JMRI4>3.0.CO;2-V              
      89. L. Villaraza, A.J., A. Bumb, and M.W. Brechbiel, Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chemical reviews, 2010. 110(5): p. 2921-2959.                    
      90. LaConte, L., N. Nitin, and G. Bao, Magnetic nanoparticle probes. Materials today, 2005. 8(5): p. 32-38.               
      91. Laurent, S., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 2008. 108(6): p. 2064-2110.       
      92. Medarova, Z., et al., In vivo imaging of siRNA delivery and silencing in tumors. Nature medicine, 2007. 13(3): p. 372-377.   
      93. Le Fur, M., et al., Radiolabeling and PET-MRI microdosing of the experimental cancer therapeutic, MN-anti-miR10b, demonstrates delivery to metastatic lesions in a murine model of metastatic breast cancer. Cancer nanotechnology, 2021. 12(1): p. 1-15.            
      94. Yeste, M., et al., Solvothermal synthesis and characterization of ytterbium/iron mixed oxide nanoparticles with potential functionalities for applications as multiplatform contrast agent in medical image techniques. Ceramics International, 2022. 48(21): p. 31191-31202.               
      95. Mahmoudi, M., et al., Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chemical reviews, 2011. 111(2): p. 253-280.                   
      96. Choi, H., et al., Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery1. Academic radiology, 2004. 11(9): p. 996-1004.     
      97. Xie, J., et al., PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010. 31(11): p. 3016-3022.            
      98. Hoopes, P.J., et al. In vivo imaging and quantification of iron oxide nanoparticle uptake and biodistribution. in Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging. 2012. SPIE.                    
      99. Serda, R.E., et al., Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Molecular imaging, 2007. 6(4): p. 7290.2007. 00025.           
      100. Leuschner, C., et al., LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast cancer research and treatment, 2006. 99(2): p. 163-176.     
      101. Sun, C., et al., In vivo MRI detection of gliomas by chlorotoxin‐conjugated superparamagnetic nanoprobes. Small, 2008. 4(3): p. 372-379.                    
      102. Zhang, C., et al., Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer research, 2007. 67(4): p. 1555-1562.             
      103. Artemov, D., et al., MR molecular imaging of the Her‐2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2003. 49(3): p. 403-408.                
      104. Toma, A., et al., Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. British journal of cancer, 2005. 93(1): p. 131-136.    
      105. Uchida, M., et al., Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. Journal of the American Chemical Society, 2006. 128(51): p. 16626-16633.          
      106. Nakhaei, P., et al., Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in Bioengineering and Biotechnology, 2021: p. 748.                 
      107. Pratt, L.R. and A. Pohorille, Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chemical Reviews, 2002. 102(8): p. 2671-2692.             
      108. Tu, Y., et al., Mimicking the cell: bio-inspired functions of supramolecular assemblies. Chemical reviews, 2016. 116(4): p. 2023-2078.                   
      109. Chetoni, P., et al., Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. Journal of ocular pharmacology and therapeutics, 2004. 20(2): p. 169-177.                   
      110. Rovira-Bru, M., D.H. Thompson, and I. Szleifer, Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures. Biophysical Journal, 2002. 83(5): p. 2419-2439.              
      111. Silindir, M., et al., Liposomes and their applications in molecular imaging. Journal of drug targeting, 2012. 20(5): p. 401-415.                 
      112. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 2005. 4(2): p. 145-160.       
      113. Benech, R.-O., et al., Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Applied and environmental microbiology, 2002. 68(8): p. 3683-3690.           
      114. Shehata, T., et al., Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. International journal of pharmaceutics, 2008. 359(1-2): p. 272-279.                    
      115. Pattni, B.S., V.V. Chupin, and V.P. Torchilin, New developments in liposomal drug delivery. Chemical reviews, 2015. 115(19): p. 10938-10966.               
      116. Xia, Y., et al., Liposome-based probes for molecular imaging: from basic research to the bedside. Nanoscale, 2019. 11(13): p. 5822-5838.             
      117. Portnoy, E., et al., Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 7(4): p. 480-488.           
      118. Seo, J.W., et al., A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjugate chemistry, 2008. 19(12): p. 2577-2584.      
      119. Zheng, J., D. Jaffray, and C. Allen, Quantitative CT imaging of the spatial and temporal distribution of liposomes in a rabbit tumor model. Molecular Pharmaceutics, 2009. 6(2): p. 571-580.    
      120. Bhavane, R., et al., Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Circulation: Cardiovascular Imaging, 2013. 6(2): p. 285-294.       
      121. Ghaghada, K.B., et al., Computed tomography imaging of solid tumors using a liposomal-iodine contrast agent in companion dogs with naturally occurring cancer. PloS one, 2016. 11(3): p. e0152718.                   
      122. Mukundan Jr, S., et al., A liposomal nanoscale contrast agent for preclinical CT in mice. American Journal of Roentgenology, 2006. 186(2): p. 300-307.           
      123. Ringhieri, P., et al., Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells. International journal of nanomedicine, 2017. 12: p. 501.      
      124. Jensen, A.I., et al., Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64Cu-DOTA using radiolabelled liposomes and PET imaging. Journal of Controlled Release, 2018. 269: p. 100-109. 
      125. Yu, B., et al., Reassembly of 89Zr‐Labeled Cancer Cell Membranes into Multicompartment Membrane‐Derived Liposomes for PET‐Trackable Tumor‐Targeted Theranostics. Advanced Materials, 2018. 30(13): p. 1704934.        
      126. Lee, H., et al., Companion diagnostic 64Cu-liposome positron emission tomography enables characterization of drug delivery to tumors and predicts response to cancer nanomedicines. Theranostics, 2018. 8(9): p. 2300.                  
      127. Gawne, P., et al., Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalton Transactions, 2018. 47(28): p. 9283-9293. 
      128. Lajunen, T., et al., The effect of light sensitizer localization on the stability of indocyanine green liposomes. Journal of Controlled Release, 2018. 284: p. 213-223.      
      129. Guan, C., et al., Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta, 2018. 182: p. 314-323.     
      130. Aizik, G., et al., Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue. ACS nano, 2017. 11(3): p. 3038-3051.       
      131. Sheng, D., et al., Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials, 2018. 165: p. 1-13.              
      132. Zhang, L., et al., Bioinspired multifunctional melanin-based nanoliposome for photoacoustic/magnetic resonance imaging-guided efficient photothermal ablation of cancer. Theranostics, 2018. 8(6): p. 1591.          
      133. Chen, Q., et al., H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proceedings of the National Academy of Sciences, 2017. 114(21): p. 5343-5348.       
      134. Sun, Q., et al., Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS applied materials & interfaces, 2018. 10(2): p. 1963-1975.