Electrospun kefiran biocomposite nanofibers as a novel transdermal carrier of pramipexole

Document Type : Original Research Article


1 Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

2 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran

3 Active Pharmaceutical Ingredients Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran


The nanostructures of kefiran can be used in different applications such as medicine, drug delivery and biology. Aiming to introduce a novel biocomposite of kefiran usable in drug delivery systems, the biocomposite nanofibers of kefiran/chitosan/poly (vinyl alcohol) (Kf/CS/PVA) were prepared with a bead-less morphology and minimum mean fiber diameter. The optimum concentration of polymers, blend ratios, and electrospinning parameters were chosen based on analyzing the nanofibers by the scanning electron microscope (SEM). The prepared nanofibrous mats were then characterized further with the atomic force microscope (AFM), Fourier transform infrared (FT-IR) and contact angle measurement. The prepared nanocomposite was studied as a potential drug carrier for pramipexole dihydrochloride, a widely used treatment for Parkinson’s disease. Pramipexole loaded Kf/PVA and Kf/CS/PVA nanocomposite were fabricated using electrospinning and crosslinked by glutaraldehyde. The release features of all drug-loaded nanofibers were conducted for studying using in vitro dissolution procedure and UV-Visible spectroscopy. Kf/PVA nanofibers showed slow and low drug release properties in contrast to Kf/CS/PVA. Although crosslinked composite nanofibers had slower release behavior than their non-cross-linked counterparts. The maximum release and reaching a steady state of crosslinked Kf/CS/PVA took four days introducing it as the best candidate of kefiran nanocomposite for drug delivery of pramipexole. 


Main Subjects

  1. Bhargava Reddy MS, Ponnamma D, Choudhary R, Sadasivuni KK .A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers, 2021;13:1105.  https://doi.org/10.3390/polym13071105
  2. Ziting B, Caihong X, Qijuan Y, Guiting L, Jun W. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthcare Mater. 2019;8:e1900670. https://doi.org/10.1002/adhm.201900670   
  3. Nangai EK, Saravanan S. Synthesis, fabrication and testing of polymer nanocomposites: A review. Materials today, proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.02.261  https://doi.org/10.1016/j.matpr.2021.02.261   
  4. Boreddy SR Reddy (eds) Advances in diverse industrial applications of nanocomposites (India: Intech) 2011.  https://doi.org/10.5772/1931   
  5. Sharma S, Malik A and Gupta P in S Ahmed and Annu (eds) Bionanocomposites in tissue engineering and regenerative medicine (Woodhead Publishing) 2021;P 507.  https://doi.org/10.1016/C2019-0-03520-0   
  6. Akbar MU, Athar MM, Bhatti IA, Bhatti HN, Khosa MK, Zia KM and et al Chapter 17 - Biomedical applications of bionanocomposites, KM Zia et al (eds) In Micro and Nano Technologies, Bionanocomposites (Elsevier) 2020;457-483.  https://doi.org/10.1016/B978-0-12-816751-9.00017-9   
  7. Arora B, Bhatia R and Attri P 28 - Bionanocomposites: Green materials for a sustainable future,   

in CM Hussain and AK Mishra (eds) New Polymer Nanocomposites for Environmental Remediation (Elsevier) 2018;699-712.  https://doi.org/10.1016/B978-0-12-811033-1.00027-5   

  1. Zafar R, Zia KM, Tabasum S, Jabeen F, Noreen A, Zuber M. Polysaccharide based bionanocomposites, properties and applications: A review. Int. J. Biol. Macromol. 2016;92:1012-1024. https://doi.org/10.1016/j.ijbiomac.2016.07.102   
  2. Radhouani H, Bicho D, Gonçalves C, Maia FR, Reis RL, Oliveira JM. Kefiran cryogels as potential scaffolds for drug delivery and tissue engineering applications. Materials Today Communications, 2019;20:100554. https://doi.org/10.1016/j.mtcomm.2019.100554   
  3. Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chemistry, 2011;127:1496-1502.  https://doi.org/10.1016/j.foodchem.2011.02.003   
  4. Piermaria J, Diosma G, Aquino C, Garrote G, Abraham A. Edible kefiran films as vehicle for probiotic microorganisms. Innovative Food Science & Emerging Technologies, 2015;32:193-199.  https://doi.org/10.1016/j.ifset.2015.09.009   
  5. Moradi Z, Kalanpour N, Kefiran, a branched polysaccharide: Preparation, properties and applications: A review. Carbohydrate Polymers, 2019;223:115100.  https://doi.org/10.1016/j.carbpol.2019.115100   
  6. Bengoa AA, Dardis C, Gagliarini N, Garrote GL, Abraham AG. Exopolysaccharides from Lactobacillus paracasei isolated From Kefir as Potential Bioactive Compounds for Microbiota Modulation. Frontiers in Microbiology, 2020;11:583254.  https://doi.org/10.3389/fmicb.2020.583254   
  7. Blandón LM, Noseda MD, Islan GA, Castro GR, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Optimization of culture conditions for kefiran production in whey: The structural and biocidal properties of the resulting polysaccharide. Bioactive Carbohydrates and Dietary Fibre, 2018;16:14-21.  https://doi.org/10.1016/j.bcdf.2018.02.001   
  8. Riaz Rajoka MS, Mehwish HM, Fang H, Padhiar AA, Zeng X, Khurshid M, He Z, Zhao L. Characterization and anti-tumor activity of exopolysaccharide produced by Lactobacillus kefiri isolated from Chinese kefir grains. Journal of Functional Foods, 2019;63:103588. https://doi.org/10.1016/j.jff.2019.103588   
  9. Jeong D, Kim DH, Kang IB, Kim H, Song KY, Kim HS, Seo KH. Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir. Food Control, 2017;78:436-442. https://doi.org/10.1016/j.foodcont.2017.02.033   
  10. Luang-In V, Deeseenthum S. Exopolysaccharide-producing isolates from Thai milk kefir and their antioxidant activities. LWT. 2016;73:592-601.  https://doi.org/10.1016/j.lwt.2016.06.068   
  11. Prado MRM, Boller C, Zibetti RGM, de Souza D, Pedroso LL, Soccol CR. Anti- inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir. Microvascular Research, 2016;108:29-33. https://doi.org/10.1016/j.mvr.2016.07.004   
  12. Cevikbas A, Yemni E, Ezzedenn FW, Yardimici T, Cevikbas U, Stohs S. Antitumoural antibacterial and antifungal activities of kefir and kefir grain. Phytotherapy Research, 1994;8:78-82.  https://doi.org/10.1002/ptr.2650080205   
  13. Rodrigues KL, Caputo LRG, Carvalho JCT, Evangelista J, Schneedorf JM. Antimicrobial and healing activity of kefir and kefiran extract. International journal of antimicrobial agents, 2005;25:404-408. https://doi.org/10.1016/j.ijantimicag.2004.09.020   
  14. Hamida RS, Shami A, Ali MA, Almohawes ZN, Mohammed AE, Bin-Meferij MM. Kefir: A protective dietary supplementation against viral infection. Biomedicine & Pharmacotherapy, 2021;133:110974-110985.  https://doi.org/10.1016/j.biopha.2020.110974   
  15. Piermaría J, Bengoechea C, Abraham AG, Guerrero A. Shear and extensional properties of kefiran. Carbohydrate Polymers, 2016;152:97-104.  https://doi.org/10.1016/j.carbpol.2016.06.067   
  16. Exarhopoulos S, N. Raphaelides S, G. Kontominas M. Conformational studies and molecular characterization of the polysaccharide kefiran. Food Hydrocolloids, 2018;77:347-356.  https://doi.org/10.1016/j.foodhyd.2017.10.011   
  17. Piermaria JA, de la Canal ML, Abraham AG. Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocolloids, 2008;22:1520-1527.  https://doi.org/10.1016/j.foodhyd.2007.10.005   
  18. Piermaria J, Bosch A, Pinotti A, Yantorno O, Garcia MA, Abraham AG. Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 2011;25:1261-1269.  https://doi.org/10.1016/j.foodhyd.2010.11.024   
  19. Motedayen AA, Khodaiyan F, Salehi EA. Development and characterisation of composite  films made of kefiran and starch. Food Chemistry, 2013;136:1231-1238.  https://doi.org/10.1016/j.foodchem.2012.08.073   
  20. Zolfi M, Khodaiyan F, Mousavi M, Hashemi M. Development and characterization of the kefiran-whey protein isolate-TiO2 nanocomposite films. International Journal of Biological Macromolecules, 2014;65:340-345. https://doi.org/10.1016/j.ijbiomac.2014.01.010   
  21. Piermaria JA, Pinotti A, Garcia MA, Abraham AG. Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids, 2009;23:684-690. https://doi.org/10.1016/j.foodhyd.2008.05.003   
  1. Rad FH, Sharifan A, Asadi G. Miscibility and morphology of kefiran/waterborne polyurethane blend films. International Journal of Food Properties, 2017;20:S2764-S2775. https://doi.org/10.1080/10942912.2017.1373664   
  2. Esnaashari SS, Rezaei S, Mirzaei E, Afshari H, Rezayat SM, Faridi-Majidi R. Preparation and characterization of kefiran electrospun nanofibers. International Journal of Biological Macromolecules, 2014;70:50-56. https://doi.org/10.1016/j.ijbiomac.2014.06.014   
  3. Jenab A, Roghanian R, Ghorbani N, Ghaedi K, & Emtiazi G. The Efficacy of Electrospun PAN/Kefiran Nanofiber and Kefir in Mammalian Cell Culture: Promotion of PC12 Cell Growth, Anti- MCF7 Breast Cancer Cells Activities, and Cytokine Production of PBMC. International Journal of Nanomedicine, 2020;15:717-728. https://doi.org/10.2147/IJN.S232264   
  4. Jenab A, Roghanian R, Emtiazi G, Ghaedi K. Manufacturing and structural analysis of antimicrobial kefiran/polyethylene oxide nanofibers for food packaging. Iranian Polymer Journal, 2017;26:31-39. https://doi.org/10.1007/s13726-016-0496-7   
  1. Aslam M, Kalyar MA, Raza ZA. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol Based Nanocomposites. Polymer Engeeneering and Science. 2018;58:2119-2132. https://doi.org/10.1002/pen.24855   
  2. Ben Halima N. Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Advances. 2016;6:39823-39832. https://doi.org/10.1039/C6RA05742J   
  3. Marin Cardona Es, Rojas Camargo J, Ciro Monsalve YA. A review of polyvinyl alcohol derivatives: Promising materials for pharmaceutical and biomedical applications. African Journal of Pharmacy and Pharmacology, 2013;8:674-684. https://doi.org/10.5897/AJPP2013.3906
  4. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AAH, Mohamad AB, Al-Amiery AA. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules, 2015;20:2833-22847. https://doi.org/10.3390/molecules201219884   
  5. Saini I, Sharma A, Dhiman R, Aggarwal S, Ram S, Sharma PK. Grafted SiC nanocrystals: For enhanced optical, electrical and mechanical properties of polyvinyl alcohol. Journal of Alloys Compounds, 2017;714:172-180. https://doi.org/10.1016/j.jallcom.2017.04.183   
  6. Lu W, Yao J, Zhu X, Qi Y. Nanomedicines: Redefining traditional medicine. Biomedicine & Pharmacotherapy, 2021;134:111103.  https://doi.org/10.1016/j.biopha.2020.111103   
  7. Mina bagherian far, Hakimeh Ziyadi. Fabrication of Polyvinyl Alcohol/Kefiran Nanofibers Membrane Using Electrospinning. Journal of Pharmaceutical and Health Sciences, 2016;4(3):211-218.   
  8. Mehrali F, Ziyadi H, Hekmati M, Faridi-Majidi R, Qomi M. Kefiran/poly(vinyl alcohol)/poly(vinyl pyrrolidone) composite nanofibers: fabrication, characterization and consideration of effective parameters in electrospinning. SN Applied Sciences, 2020;2:895. https://doi.org/10.1007/s42452-020-2714-3   
  9. Shokraei S, Mirzaei E, Shokraei N, Derakhshan MA, Ghanbari H, Faridi‐Majidi R. Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. applied polymer science. 2021; 138:50547. https://doi.org/10.1002/app.50547   
  10. Azmana M, Mahmood S, Hilles AR, Rahman A, Arifin MAB, Ahmed S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules, 2021;185:832-848.  https://doi.org/10.1016/j.ijbiomac.2021.07.023   
  11. Khan A, Alamry KA . Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydrate Research, 2021;506:108368.  https://doi.org/10.1016/j.carres.2021.108368   
  12. Liang H, Mirinejad MS, Asefnejad A, Baharifar H, Li X, Saber-Samandari S, ... & Khandan A. Fabrication of tragacanthin gum-carboxymethyl chitosan bio-nanocomposite wound dressing with silver-titanium nanoparticles using freeze-drying method. Materials Chemistry and Physics, 2022;279:125770.‏  https://doi.org/10.1016/j.matchemphys.2022.125770   
  13. Raisi A, Asefnejad A, Shahali M, Doozandeh Z, Kamyab Moghadas B, Saber-Samandari S, & Khandan A. A soft tissue fabricated using a freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing. Journal of Nanoanalysis, 2020;7(4):262-274. https://doi.org/10.22034/JNA.2022.680836
  14. Jamnezhad S, Asefnejad A, Motififard M, Yazdekhasti H, Kolooshani A, Saber-Samandari S, & Khandan A. Development and investigation of novel alginate-hyaluronic acid bone fillers using freeze drying technique for orthopedic field. Nanomedicine Research Journal, 2020;5(4):306-315.‏ https://doi.org/10.22034/nmrj.2020.04.00
  15. Sabaghi M, Maghsoudlou Y, Habibi P. Enhancing structural properties and antioxidant activity of kefiran films by chitosan addition. Food Structure, 2015;5:66-71.  https://doi.org/10.1016/j.foostr.2015.06.003   
  16. Dadashi S, Boddohi S, Soleimani N. Preparation, characterization, and antibacterial effect of doxycycline loaded kefiran nanofibers. Journal of Drug Delivery Science and Technology, 2019;52:979-985. https://doi.org/10.1016/j.jddst.2019.06.012   
  17. M. Blandón L, A. Islan G, R. Castro G, D. Noseda M, Thomaz-Soccol V, R. Soccol C. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin, Colloids and Surfaces B: Biointerfaces, 2016;145:706-715. https://doi.org/10.1016/j.colsurfb.2016.05.078   
  18. Moreno-Cortez IE, Romero-García J, González-González V, García-Gutierrez DI, Garza-Navarro MA, Cruz-Silva R. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor. Mater. Sci. Eng. C, 2015;52:306-314.  https://doi.org/10.1016/j.msec.2015.03.049   
  19. Nadem S, Ziyadi H, Hekmati M, baghali M. Cross-linked poly (vinyl alcohol) nanofibers as drug carrier of clindamycin. Polymer Bulletin, 2020;77:5615-5629.  https://doi.org/10.1007/s00289-019-03027-z   
  20. Piermaria J, Bosch A, Pinotti A, Yantorno O, Garcia MA, Abraham AG. Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloid, 2011;25:1261-1269. https://doi.org/10.1016/j.foodhyd.2010.11.024   
  21. Ghasemlou M, Khodaiyan F, Jahanbin K, Garibzahedi SMT, Taheri S. Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food chem. 2012;133:383-389. https://doi.org/10.1016/j.foodchem.2012.01.046   
  22. Archana D, Dutta J, Dutta PK. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies, International journal of biological macromolecules, 2013;57:193-203. https://doi.org/10.1016/j.ijbiomac.2013.03.002   
  23. Papich MG. Saunders handbook of veterinary drugs, (Elsevier) 2007:236-238.   
  24. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate polymers, 2000;43:195-203. https://doi.org/10.1016/S0144-8617(00)00151-X