Fabrication and modeling of nanocomposites with bioceramic nanoparticles for rapid wound healing: An experimental and molecular dynamics investigation

Document Type : Original Research Article


1 Isfahan University of Technology, Department of Chemistry, Isfahan, Iran

2 Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran


In the present study, Fabrication and modeling of nanocomposites with bioceramic nanoparticles for rapid wound healing with (0wt. %, 5wt. %, 10wt. %, 15wt. % NPs) were investigated. After the fabrication of nanocomposites using the freeze-drying technique, X-ray diffraction (XRD) test is performed to show the crystallinity of hydroxyapatite and titanium oxide. Scanning electron microscopy (SEM) tests are performed to demonstrate the morphology of the structure, atomic force microscope (AFM) test is performed to show surface roughness and pores. Finally by placing nano scaffolds in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. Then, by performing the tensile test, the results related to the tensile strength of the scaffolds are examined. In this paper, the sum of mechanical and physical laboratory results are compared with the results obtained by molecular dynamics simulation (MDs). The results show that with the increase of titanium nanoparticles, the physical and mechanical properties, as well as the healing properties of the wound dressing, have increased significantly. Also, the comparison of laboratory results and MDs results determine the accuracy of this method. Therefore fabricating these nanocomposites helps a lot for rapid wound healing.


Main Subjects

[1] D. Dippold, M. Tallawi, S. Tansaz, J.A. Roether, A.R. Boccaccini, Novel electrospun poly(glycerol sebacate)-zein fiber mats as candidate materials for cardiac tissue engineering, Eur. Polym. J. 75 (2016) 504-513.  https://doi.org/10.1016/j.eurpolymj.2015.12.030
[2] A. Salerno, L. Verdolotti, M.G. Raucci, J. Saurina, C. Domingo, R. Lamanna, V. Iozzino, M. Lavorgna, Hybrid gelatin-based porous materials with a tunable multiscale morphology for tissue engineering and drug delivery, Eur. Polym. J. 99 (2018) 230-239. https://doi.org/10.1016/j.eurpolymj.2017.12.024
[3] A. Farzan, S. Borandeh, N. Zanjanizadeh Ezazi, S. Lipponen, H.A. Santos, J. Seppälä, 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells, Eur. Polym. J. 139 (2020) 109988. https://doi.org/10.1016/j.eurpolymj.2020.109988
[4] M. Rostamian, M.R. Kalaee, S.R. Dehkordi, M. Panahi-Sarmad, M. Tirgar, V. Goodarzi, Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: The promising candidate for soft tissue engineering, Eur. Polym. J. 138 (2020) 109985.  https://doi.org/10.1016/j.eurpolymj.2020.109985
[5] A. Eyvazian, C. Zhang, F. Musharavati, A. Farazin, M. Mohammadimehr, A. Khan, Effects of appearance characteristics on the mechanical properties of defective SWCNTs: using finite element methods and molecular dynamics simulation, Eur. Phys. J. Plus. 136 (2021) 946. https://doi.org/10.1140/epjp/s13360-021-01840-y
[6] S. Tavasolikejani, A. Farazin, Explore the most recent advancements in the domain of self-healing intelligent composites specifically designed for use in dentistry, J. Mech. Behav. Biomed. Mater. (2023) 106123. https://doi.org/10.1016/j.jmbbm.2023.106123
[7] M. Hassan, K. Dave, R. Chandrawati, F. Dehghani, V.G. Gomes, 3D printing of biopolymer nanocomposites for tissue engineering: Nanomaterials, processing and structure-function relation, Eur. Polym. J. 121 (2019) 109340. https://doi.org/10.1016/j.eurpolymj.2019.109340
[8] N. Dehghan-Manshadi, S. Fattahi, M. Hadizadeh, H. Nikukar, S.M. Moshtaghioun, B. Aflatoonian, The influence of elastomeric polyurethane type and ratio on the physicochemical properties of electrospun polyurethane/silk fibroin hybrid nanofibers as potential scaffolds for soft and hard tissue engineering, Eur. Polym. J. 121 (2019) 109294. https://doi.org/10.1016/j.eurpolymj.2019.109294
[9] R. Mishra, R. Varshney, N. Das, D. Sircar, P. Roy, Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering, Eur. Polym. J. 119 (2019) 155-168. https://doi.org/10.1016/j.eurpolymj.2019.07.007
[10] A. Emami, T. Talaei‐Khozani, Z. Vojdani, N. Zarei fard, Comparative assessment of the efficiency of various decellularization agents for bone tissue engineering, J. Biomed. Mater. Res. Part B Appl. Biomater. 109 (2021) 19-32. https://doi.org/10.1002/jbm.b.34677
[11] A. Kumar, S.M. Mir, I. Aldulijan, A. Mahajan, A. Anwar, C.H. Leon, A. Terracciano, X. Zhao, T. Su, D.M. Kalyon, S.G. Kumbar, X. Yu, Load-bearing biodegradable PCL-PGA-beta TCP scaffolds for bone tissue regeneration, J. Biomed. Mater. Res. Part B Appl. Biomater. 109 (2021) 193-200. https://doi.org/10.1002/jbm.b.34691
[12] A. Alijagic, F. Barbero, D. Gaglio, E. Napodano, O. Benada, O. Kofroňová, V.F. Puntes, N.G. Bastús, A. Pinsino, Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation, J. Hazard. Mater. 402 (2021) 123793. https://doi.org/10.1016/j.jhazmat.2020.123793
[13] A. Farazin, M. Mohammadimehr, H. Naeimi, Flexible self-healing nanocomposite based gelatin/tannic acid/acrylic acid reinforced with zinc oxide nanoparticles and hollow silver nanoparticles based on porous silica for rapid wound healing, Int. J. Biol. Macromol. 241 (2023) 124572. https://doi.org/10.1016/j.ijbiomac.2023.124572
[14] A. Farazin, F.A. Shirazi, M. Shafiei, Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review, Int. J. Biol. Macromol. 244 (2023) 125454. https://doi.org/10.1016/j.ijbiomac.2023.125454
[15] A. Farazin, C. Zhang, A.H. Ghasemi, Preparation and identification of new antibacterial and biocompatible dressings based on gelatin/polyvinyl alcohol and castor oil, J. Polym. Res. 30 (2023) 125. https://doi.org/10.1007/s10965-023-03505-z
[16] A. Farazin, C. Zhang, A. Gheisizadeh, A. Shahbazi, 3D bio-printing for use as bone replacement tissues: A review of biomedical application, Biomed. Eng. Adv. 5 (2023) 100075. https://doi.org/10.1016/j.bea.2023.100075
[17] A. Ghorbanpour Arani, N. Miralaei, A. Farazin, M. Mohammadimehr, An extensive review of the repair behavior of smart self-healing polymer matrix composites, J. Mater. Res. 38 (2023) 617-632. https://doi.org/10.1557/s43578-022-00884-9
[18] A. Farazin, A.H. Ghasemi, Design, Synthesis, and Fabrication of Chitosan/Hydroxyapatite Composite Scaffold for Use as Bone Replacement Tissue by Sol-Gel Method, J. Inorg. Organomet. Polym. Mater. 32 (2022) 3067-3082. https://doi.org/10.1007/s10904-022-02343-8
[19] L.P. da Silva, S.C. Kundu, R.L. Reis, V.M. Correlo, Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine, Trends Biotechnol. 38 (2020) 24-49. https://doi.org/10.1016/j.tibtech.2019.07.002
[20] C.D. Spicer, Hydrogel scaffolds for tissue engineering: the importance of polymer choice, Polym. Chem. 11 (2020) 184-219. https://doi.org/10.1039/C9PY01021A
[21] N. Johari, L. Moroni, A. Samadikuchaksaraei, Tuning the conformation and mechanical properties of silk fibroin hydrogels, Eur. Polym. J. 134 (2020) 109842.  https://doi.org/10.1016/j.eurpolymj.2020.109842
[22] P. Naderi, M. Zarei, S. Karbasi, H. Salehi, Evaluation of the effects of keratin on physical, mechanical and biological properties of poly (3-hydroxybutyrate) electrospun scaffold: Potential application in bone tissue engineering, Eur. Polym. J. 124 (2020) 109502.  https://doi.org/10.1016/j.eurpolymj.2020.109502
[23] V.A. Reyna-Urrutia, V. Mata-Haro, J. V. Cauich-Rodriguez, W.A. Herrera-Kao, J.M. Cervantes-Uc, Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds, Eur. Polym. J. 117 (2019) 424-433. https://doi.org/10.1016/j.eurpolymj.2019.05.010
[24] C. Zhang, P. Dong, Y. Bai, D. Quan, Nanofibrous polyester-polypeptide block copolymer scaffolds with high porosity and controlled degradation promote cell adhesion, proliferation and differentiation, Eur. Polym. J. 130 (2020) 109647. https://doi.org/10.1016/j.eurpolymj.2020.109647
[25] B. Naton, M. Ecke, R. Hampp, Production of fertile hybrids by electrofusion of vacuolated and evacuolated tobacco mesophyll protoplasts, Plant Sci. 85 (1992) 197-208. https://doi.org/10.1016/0168-9452(92)90116-4
[26] M. Haghighi, A. Khodadadi, H. Golestanian, F. Aghadavoudi, Effects of defects and functional groups on graphene and nanotube thermoset epoxy-based nanocomposites mechanical properties using molecular dynamics simulation, Polym. Polym. Compos. (2020) 096739112092907.  https://doi.org/10.1177/0967391120929075
[27] A. Montazeri, M. Sadeghi, R. Naghdabadi, H. Rafii-Tabar, Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites, Phys. Lett. A. 375 (2011) 1588-1597. https://doi.org/10.1016/j.physleta.2011.02.065
[28] B. Mortazavi, G. Cuniberti, T. Rabczuk, Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study, Comput. Mater. Sci. 99 (2015) 285-289. https://doi.org/10.1016/j.commatsci.2014.12.036
[29] S.-P. Ju, C.-C. Chen, T.-J. Huang, C.-H. Liao, H.-L. Chen, Y.-C. Chuang, Y.-C. Wu, H.-T. Chen, Investigation of the structural and mechanical properties of polypropylene-based carbon fiber nanocomposites by experimental measurement and molecular dynamics simulation, Comput. Mater. Sci. 115 (2016) 1-10. https://doi.org/10.1016/j.commatsci.2015.12.032
[30] S. Frankland, The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation, Compos. Sci. Technol. 63 (2003) 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9
[31] V. Marcadon, D. Brown, E. Hervé, P. Mélé, N.D. Albérola, A. Zaoui, Confrontation between Molecular Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites, Comput. Mater. Sci. 79 (2013) 495-505. https://doi.org/10.1016/j.commatsci.2013.07.002
[32] Y. Han, J. Elliott, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput. Mater. Sci. 39 (2007) 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011
[33] A.R.C. Baljon, M.O. Robbins, Simulations of Crazing in Polymer Glasses: Effect of Chain Length and Surface Tension, Macromolecules. 34 (2001) 4200-4209. https://doi.org/10.1021/ma0012393
[34] P.K. Naicker, P.T. Cummings, H. Zhang, J.F. Banfield, Characterization of Titanium Dioxide Nanoparticles Using Molecular Dynamics Simulations, J. Phys. Chem. B. 109 (2005) 15243-15249. https://doi.org/10.1021/jp050963q
[35] H. Zhang, X. Lu, Y. Leng, L. Fang, S. Qu, B. Feng, J. Weng, J. Wang, Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents, Acta Biomater. 5 (2009) 1169-1181. https://doi.org/10.1016/j.actbio.2008.11.014
[36] R.G. Forlong, Focal point characteristics and habitat use curves of underyearling brown trout (Salmo trutta) in the Kahuterawa Stream: a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University, (1988).
[37] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials. 27 (2006) 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
[38] K. Kalantari, E. Mostafavi, B. Saleh, P. Soltantabar, T.J. Webster, Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications, Eur. Polym. J. 134 (2020) 109853.  https://doi.org/10.1016/j.eurpolymj.2020.109853
[39] W. Miao, W. Zou, Y. Luo, N. Zheng, Q. Zhao, T. Xie, Structural tuning of polycaprolactone based thermadapt shape memory polymer, Polym. Chem. 11 (2020) 1369-1374. https://doi.org/10.1039/C9PY01891C
[40] A.A. Menazea, S.A. Abdelbadie, M.K. Ahmed, Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications, Appl. Surf. Sci. 508 (2020) 145299. https://doi.org/10.1016/j.apsusc.2020.145299
[41] T.P. Ribeiro, F.J. Monteiro, M.S. Laranjeira, PEGylation of iron doped hydroxyapatite nanoparticles for increased applicability as MRI contrast agents and as drug vehicles: A study on thrombogenicity, cytocompatibility and drug loading, Eur. Polym. J. 137 (2020) 109934. https://doi.org/10.1016/j.eurpolymj.2020.109934
[42] S. Guo, H. Yoshioka, Y. Kato, H. Kakehi, M. Miura, N. Isu, A. Manseri, H. Sawada, B. Ameduri, Photocatalytic activity of vinylidene fluoride-containing copolymers/anatase titanium oxide/silica nanocomposites, Eur. Polym. J. 58 (2014) 79-89. https://doi.org/10.1016/j.eurpolymj.2014.04.022
[43] Y. Xing, L. Wang, H. Yu, A. Khan, F. Haq, L. Zhu, Recent progress in preparation of branched polyethylene with nickel, titanium, vanadium and chromium catalytic systems and EPR study of related catalytic systems, Eur. Polym. J. 121 (2019) 109339. https://doi.org/10.1016/j.eurpolymj.2019.109339
[44] N. Politakos, E. Diamanti, S.E. Moya, Smart, biocompatible, responsive surfaces on pH, temperature and ionic strength of titanium oxide and niobium oxide with polymer brushes of poly(acrylic acid), poly(N-isopropylacrylamide) and poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride), Eur. Polym. J. 112 (2019) 306-319. https://doi.org/10.1016/j.eurpolymj.2019.01.018
[45] Y. Hu, Y. Shao, Z. Liu, X. He, B. Liu, Effect of short-chain branching on the tie chains and dynamics of bimodal polyethylene: Molecular dynamics simulation, Eur. Polym. J. 103 (2018) 312-321. https://doi.org/10.1016/j.eurpolymj.2018.01.006
[46] L.G. Lascane, E.F. Oliveira, D.S. Galvão, A. Batagin-Neto, Polyfuran-based chemical sensors: Identification of promising derivatives via DFT calculations and fully atomistic reactive molecular dynamics, Eur. Polym. J. 141 (2020) 110085. https://doi.org/10.1016/j.eurpolymj.2020.110085
[47] S. Sahmani, S. Saber-Samandari, A. Khandan, M.M. Aghdam, Influence of MgO nanoparticles on the mechanical properties of coated hydroxyapatite nanocomposite scaffolds produced via space holder technique: Fabrication, characterization and simulation, J. Mech. Behav. Biomed. Mater. 95 (2019) 76-88. https://doi.org/10.1016/j.jmbbm.2019.03.014
[48] M.M. Salmani, M. Hashemian, H.J. Yekta, M.G. Nejad, S. Saber-Samandari, A. Khandan, Synergic Effects of Magnetic Nanoparticles on Hyperthermia-Based Therapy and Controlled Drug Delivery for Bone Substitute Application, J. Supercond. Nov. Magn. 33 (2020) 2809-2820. https://doi.org/10.1007/s10948-020-05530-1
[49] D. Timpu, L. Sacarescu, T. Vasiliu, M.V. Dinu, G. David, Surface cationic functionalized nano-hydroxyapatite - Preparation, characterization, effect of coverage on properties and related applications, Eur. Polym. J. 132 (2020) 109759. https://doi.org/10.1016/j.eurpolymj.2020.109759
[50] M.K. Ahmed, A.M. Moydeen, A.M. Ismail, M.E. El-Naggar, A.A. Menazea, M.H. El-Newehy, Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles, J. Mol. Struct. 1225 (2021) 129138. https://doi.org/10.1016/j.molstruc.2020.129138
[51] A. Boonmahitthisud, S. Chuayjuljit, K. Kamhangdechpol, M. Polsranoi, Nanocomposites of high-impact polystyrene with unmodified nanosized TiO 2 and polystyrene-encapsulated MPTMS-modified nanosized TiO 2 : mechanical, thermal and morphological properties, Plast. Rubber Compos. (2020) 1-9. https://doi.org/10.1080/14658011.2020.1838710
[52] Q. Ibrahim, R. Akbarzadeh, A photocatalytic TiO2/graphene bilayer membrane design for water desalination: a molecular dynamic simulation, J. Mol. Model. 26 (2020) 165. https://doi.org/10.1007/s00894-020-04422-4