Controlled Delivery of Levothyroxine using a Drug carrier Cu(II) metal-organic framework

Document Type : Original Research Article


1 Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, 67149, Ahvaz, Iran

2 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 67149, Ahvaz, Iran



Populations suffer from chronic disorders especially hypothyroidism. To decrease thyroid-stimulating hormone (TSH) and medicate hypothyroidism in patients were diagnosed with thyroid cancer and nodular thyroid disease, levothyroxine is utilized clinically.  Applications of metal-organic frameworks (MOFs) in various fields of medicine have attracted much attention. Loading levothyroxine onto the nanostructured Cu(II)-MOFs, Cu(II)-BTC, as well as subsequent drug release behavior were studied. Nanostructured Cu(II)-BTC was used to load and release the drug levothyroxine. The obtained results confirmed that besides effects regarding the stability and release of the levothyroxine in phosphate buffer solution (pH=7.4, 10 mM), surface characteristics would affect compounds affinity towards particles. The morphology investigation of the surface roughness was characterized by SEM and AFM. Drug loading amount was determined by Thermal Gravimetric Analysis (TGA). The drug release profiles are characterized by UV spectrophotometry in phosphate buffer solution (PBS), which confirms that they are released in their active form. The release of levothyroxine was studied by detecting in 7 days. The concentration of levothyroxine increased; it was achieved to normal limitation (12.5 μg mL-1). Based on the results, 10 μM concentration of levothyroxine was determined within 24 h as IC50 concentration in WJMSCs. A comparison of levothyroxine and loading levothyroxine showed that the amount of levothyroxine cytotoxicity was significantly higher than loading levothyroxine (P <0.05). Also, there were significant morphological changes such as shrinkage in treated cells with levothyroxine than loading levothyroxine.

Graphical Abstract

Controlled Delivery of Levothyroxine using a Drug carrier Cu(II) metal-organic framework


Main Subjects

  1. Ju, J., Gu, Z., Liu, X., Zhang, S., Peng, X., & Kuang, T. (2020). Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int. J. Biol. Macromol., 147, 1164-1173.
  2. Yao, C. H., Chen, K. Y., Cheng, M. H., Chen, Y. S., & Huang, C. H. (2020). Effect of genipin crosslinked chitosan scaffolds containing SDF-1 on wound healing in a rat model. Mater. Sci. Eng. C, 109, 110368.
  3. Kim, C., Kim, H., Park, H., & Lee, K. Y. (2019). Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr. Polym., 223, 115045.
  4. Lin, W.; Cui, Y.; Yang, Y.; Hu, Q.; Qian, G. (2018) A biocompatible metal-organic framework as a pH and temperature dual-responsive drug carrier, Dalton Trans., 47, 15882-15887.
  5. Liu, W.; Liu, L.; Ji, G.; Li, D.; Zhang, Y.; Ma, J.; Du, Y. (2017) Composition Design and Structural Characterization of MOF-Derived Composites with Controllable Electromagnetic Properties, ACS Sustain. Chem. Eng., 5, 7961-71.
  6. Lu, L.; Ma, M.; Gao, C.; Li, H.; Li, L.; Dong, F.; Xiong, Y. (2020) Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Delivery, Pharmaceutics., 12, 98-113.
  7. Orellana-Tavra, C.; Köppen, M.; Li, A.; Stock, N.; Fairen-Jimenez, D. (2020) Biocompatible, Crystalline, and Amorphous Bismuth-Based Metal-Organic Frameworks for Drug Delivery, ACS Appl. Mater. Interfaces., 12, 5633-41.
  8. Liu, W.; Zhong, Y.; Wang, X.; Zhuang, C.; Chen, J.; Liu, D.; Xiao, W.; Pan, Y.; Huang, J.; Liu, J. (2020) A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery, Inorg. Chem. Commun., 111, 107675-107689.
  9. Ricco, R.; Liang, S.; Gassensmith, J.J.; Caruso, F.; Doonan, F.; Falcaro, P. (2018) Metal−Organic Frameworks for Cell and Virus Biology: A Perspective, ACS Nano, 12, 13-23.
  10. Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C (2018) Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine, Adv. Mater., 1707365-1707380.
  11. Davis, M. E., Chen, Z., & Shin, D. M. (2010). Nanoparticle therapeutics: an emerging treatment modality for cancer. J. Nanosci. Nanotechnol.: A collection of reviews from nature journals (pp. 239-250).
  12. Dyson, P. J., & Sava, G. (2006). Metal-based antitumour drugs in the post genomic era. Dalton Trans., 16, 1929-1933.
  13. Huxford, R. C., Della Rocca, J., & Lin, W. (2010). Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol, 14(2), 262-268.
  14. Anglin, E. J., Schwartz, M. P., Ng, V. P., Perelman, L. A., & Sailor, M. J. (2004). Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir, 20(25), 11264-11269.
  15. Salonen, J., Kaukonen, A. M., Hirvonen, J., & Lehto, V. P. (2008). Mesoporous silicon in drug delivery applications. J. Pharm. Sci., 97(2), 632-653.
  16. Kashanian, S., Rostami, E., Harding, F. J., McInnes, S. J., Al-Bataineh, S., & Voelcker, N. H. (2016). Controlled delivery of levothyroxine using porous silicon as a drug nanocontainer. Aust. J. Chem., 69(2), 204-211.
  17. Epstein, P. M. (2012). Bone and the cAMP signaling pathway: emerging therapeutics. In Bone-Metabolic Functions and Modulators , 271-287. Springer, London.
  18. Blakesley, V. A. (2005). Current methodology to assess bioequivalence of levothyroxine sodium products is inadequate. AAPS J., 7(1), E42-E46.
  19. Mandel, S. J., Brent, G. A., & Larsen, P. R. (1993). Levothyroxine therapy in patients with thyroid disease. Ann. Intern. Med., 119(6), 492-502.
  20. Colucci, P., Yue, C. S., Ducharme, M., & Benvenga, S. (2013). A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. Eur. J. Endocrinol., 9(1), 40.
  21. Padula, C., Pappani, A., & Santi, P. (2008). In vitro permeation of levothyroxine across the skin. Int. J. Pharm., 349(1-2), 161-165.
  22. Azarbayjani, A. F., Venugopal, J. R., Ramakrishna, S., Lim, F. C., Chan, Y. W., & Chan, S. Y. (2010). Smart polymeric nanofibers for topical delivery of levothyroxine. J. Pharm. Pharm. Sci., 13(3), 400-410.
  23. Rostami, E., Kashanian, S., & Azandaryani, A. H. (2014). Preparation of solid lipid nanoparticles as drug carriers for levothyroxine sodium with in vitro drug delivery kinetic characterization. Mol. Biol. Rep., 41(5), 3521-3527.
  24. Kashanian, S., & Rostami, E. (2014). PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. J. Nanoparticle Res., 16(3), 2293.
  25. Rostami, E., Kashanian, S., & Askari, M. (2014). The effect of ultrasound wave on levothyroxine release from chitosan nanoparticles. In Adv Mat Res., 829, 284-288. Trans Tech Publications Ltd.
  26. Schall Jr, R. F., Fraser, A. S., Hansen, H. W., Kern, C. W., & Tenoso, H. J. (1978). A sensitive manual enzyme immunoassay for thyroxine. Clin. Chem., 24(10), 1801-1804.
  27. Xiao, J., Zhu, Y., Huddleston, S., Li, P., Xiao, B., Farha, O. K., & Ameer, G. A. (2018). Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS nano, 12(2), 1023-1032.
  28. Zhuang, Y., Zhang, S., Yang, K., Ren, L., & Dai, K. (2020). Antibacterial activity of copper‐bearing 316L stainless steel for the prevention of implant‐related infection. J. Biomed. Mater. Res., 108(2), 484-495.
  29. Loera-Serna, S., Oliver-Tolentino, M. A., de Lourdes López-Núñez, M., Santana-Cruz, A., Guzmán-Vargas, A., Cabrera-Sierra, R., & Flores, J. (2012). Electrochemical behavior of Cu3 (BTC) 2. metal-organic framework: The effect of the method of synthesis. J. Alloys Compd., 540, 113-120.
  30. Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., ... & Reedijk, J. (2013). Terminology of Metal-Organic Frameworks and Coordination Polymers (IUPAC Provisional Recommendation). Research Triangle Park, NC.
  31. Horcajada, P., Serre, C., Maurin, G., Ramsahye, N. A., Balas, F., Vallet-Regi, M., ... & Férey, G. (2008). Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 130(21), 6774-6780.
  32. James, S. L. (2003). Metal-organic frameworks. Chem. Soc. Rev., 32(5), 276-288.
  33. Li, Y., Miao, J., Sun, X., Xiao, J., Li, Y., Wang, H., ... & Li, Z. (2016). Mechanochemical synthesis of Cu-BTC@ GO with enhanced water stability and toluene adsorption capacity. Chem. Eng. J., 298, 191-197.
  34. Hosseini, M. S., Zeinali, S., & Sheikhi, M. H. (2016). Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B Chem., 230, 9-16.
  35. Salonen, J., Laitinen, L., Kaukonen, A. M., Tuura, J., Björkqvist, M., Heikkilä, T., ... & Lehto, V. P. (2005). Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J controlled release, 108(2-3), 362-374.
  36. Y. Orooji, M. Ghanbari, O. Amiri and M. Salavati-Niasari, J. Hazard. Mater., 2020, 389, 122079.
  37. M. Karami, M. Ghanbari, H. A. Alshamsi, S. Rashki and M. Salavati-Niasari, Inorg. Chem. Front., 2021, 8, 2442-2460.
  38. Yan, W., Hsiao, V. K., Zheng, Y. B., Shariff, Y. M., Gao, T., & Huang, T. J. (2009). Towards nanoporous polymer thin film-based drug delivery systems. Thin Solid Films, 517(5), 1794-1798.
  39. Miller, S. R., Heurtaux, D., Baati, T., Horcajada, P., Grenèche, J. M., & Serre, C. (2010). Biodegradable therapeutic MOFs for the delivery of bioactive molecules. ChemComm, 46(25), 4526-4528.
  40. Cai, X., Xie, Z., Ding, B., Shao, S., Liang, S., Pang, M., & Lin, J. (2019). Monodispersed Copper (I)‐Based Nano Metal-Organic Framework as a Biodegradable Drug Carrier with Enhanced Photodynamic Therapy Efficacy. Adv. Sci. Lett., 6(15), 1900848.
  41. Gulcay, E., & Erucar, I. (2019). Biocompatible MOFs for Storage and Separation of O2: A Molecular Simulation Study. Ind. Eng. Chem. Res., 58(8), 3225-3237.
  42. Lin, W., Cui, Y., Yang, Y., Hu, Q., & Qian, G. (2018). A biocompatible metal-organic framework as a pH and temperature dual-responsive drug carrier. Dalton Trans., 47(44), 15882-15887.
  43. Neisi, Z., Ansari-Asl, Z., Jafarinejad-Farsangi, S., Tarzi, M. E., Sedaghat, T., & Nobakht, V. (2019). Synthesis, characterization and biocompatibility of polypyrrole/Cu (II) metal-organic framework nanocomposites. Colloids Surfaces B, 178, 365-376.
  44. Gan, S., Tong, X., Zhang, Y., Wu, J., Hu, Y., & Yuan, A. (2019). Covalent Organic Framework‐Supported Molecularly Dispersed Near‐Infrared Dyes Boost Immunogenic Phototherapy against Tumors. Adv. Funct. Mater., 29(46), 1902757
  45. Gautam, S,. Singhal , J., Lee , H.K., Chae K.H., (2022). Drug delivery of paracetamol by metal-organic frameworks (HKUST-1): improvised synthesis and investigations. Mater. Today Chem., 23(100647).
  46. Ansari-Asl, Z., Shahvali, Z., Sacourbaravi, R., Hoveizi, E., Darabpour, E., (2022). Cu (II) metal-organic framework@ Polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous and Mesoporous Materials., 336 111866.
  47. Ischakov, R., Adler-Abramovich, L., Buzhansky, L., Shekhter, T., Gazit, E., (2013). Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorganic & medicinal chemistry. 21 3517-22.
  48. Zhao, H., Hao, S., Fu, Q., Zhang, X., Meng, L., Xu, F., Yang, J., (2022) Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chemistry of Materials., 34 5258-72.
  49. Ahmed, K., Hassan, MM., Kabir, MA., (2021) Handbook of Polymer and Ceramic Nanotechnology for Biomedical Applications. Springer., pp 1357-75.