Current Advancements and Potential Applications of Nanocomposite Hydrogels in Dentistry: A Systematic Review

Document Type : Review Paper

Authors

1 Department of Prosthodontics, Faculty of Dentistry, Brawijaya University, Malang, Indonesia

2 Dentistry Education Program, Faculty of Dentistry, Brawijaya University, Malang, Indonesia

Abstract

Nanotechnology is applied in many scientific domains because it provides a variety of practical answers to scientific and medical problems. This systematic literature review using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) method to analyze nanocomposite hydrogels (NCHGs) in dentistry. Based on the results of a literature review study on 40 articles, NCHGs have the potential for antibacterial agents, tissue engineering, drug delivery systems, dental materials, etc. The present review aims to provide a depth analysis of NCHGs, impart on the recent advancement in the scope of dentistry, and discuss their applications. Understanding of the principles of NCHGs, their strengths and limitations as well as their specific benefits. 

Keywords

Main Subjects


  1. Umapathy VR, Natarajan PM, SumathiJones C, Swamikannu B, Johnson WMS, Alagarsamy V, et al. Current trends and future perspectives on dental nanomaterials - An overview of nanotechnology strategies in dentistry. J King Saud Univ - Sci. 2022 Oct 1;34(7):102231.
    https://doi.org/10.1016/j.jksus.2022.102231

 

  1. Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of nanotechnology in medical field: a brief review. Glob Heal J. 2023 Jun 1;7(2):70-7.
    https://doi.org/10.1016/j.glohj.2023.02.008

 

  1. Singh H, Kaur K. Role of nanotechnology in research fields: Medical sciences, military & tribology- A review on recent advancements, grand challenges and perspectives. Mater Today Proc. 2023 Feb 17;
    https://doi.org/10.1016/j.matpr.2023.02.061

 

  1. Jandt KD, Watts DC. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials. Dent Mater. 2020 Nov 1;36(11):1365-78.
    https://doi.org/10.1016/j.dental.2020.08.006

 

  1. Sahu T, Ratre YK, Chauhan S, Bhaskar LVKS, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol. 2021 Jun 1;63:102487.
    https://doi.org/10.1016/j.jddst.2021.102487

 

  1. Hasnain MS, Nayak AK. Nanocomposites for improved orthopedic and bone tissue engineering applications. Appl Nanocomposite Mater Orthop. 2019 Jan 1;145-77.
    https://doi.org/10.1016/B978-0-12-813740-6.00008-9

 

  1. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R. Preparation of cellulose-based hydrogel: a review. J Mater Res Technol. 2021 Jan 1;10:935-52.
    https://doi.org/10.1016/j.jmrt.2020.12.012

 

  1. Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, et al. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med [Internet]. 2022 Sep 1 [cited 2023 Aug 13];7(3):e10315. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/btm2.10315

 

  1. Yegappan R, Selvaprithiviraj V, journal of … SA-I, 2019 U. Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. Elsevier [Internet]. Available from: https://www.sciencedirect.com/science/article/pii/S0141813018348700
    https://doi.org/10.1016/j.ijbiomac.2018.10.182

 

  1. Al homsi R, Eltahir S, Jagal J, Ali Abdelkareem M, Ghoneim MM, Rawas-Qalaji MM, et al. Thermosensitive injectable graphene oxide/chitosan-based nanocomposite hydrogels for controlling the in vivo release of bupivacaine hydrochloride. Int J Pharm. 2022 Jun 10;621.
    https://doi.org/10.1016/j.ijpharm.2022.121786

 

  1. Shanmugam DK, Madhavan Y, Manimaran A, Kaliaraj GS, Mohanraj KG, Kandhasamy N, et al. Efficacy of Graphene-Based Nanocomposite Gels as a Promising Wound Healing Biomaterial. Gels (Basel, Switzerland) [Internet]. 2022 Dec;9(1). Available from: http://www.ncbi.nlm.nih.gov/pubmed/36661790
    https://doi.org/10.3390/gels9010022

 

  1. Yousefiasl S, Sharifi E, Salahinejad E, Makvandi P, Irani S. Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering. Eng Regen. 2023 Mar 1;4(1):1-11.
    https://doi.org/10.1016/j.engreg.2022.09.005

 

  1. Pan Y, Zhao Y, Kuang R, Liu H, Sun D, Mao T, et al. Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. Mater Sci Eng C. 2020 Nov 1;116.
    https://doi.org/10.1016/j.msec.2020.111158

 

  1. Chen X, Wang H, Sun X, Bu Y, Yan H, Lin Q. Chemical characterization and biological properties of titania/hydroxyapatite-promoted biomimetic alginate-chitosan-gelatin composite hydrogels. Ceram Int [Internet]. 2023 Aug; Available from: Link

 

  1. Alipour M, Firouzi N, Aghazadeh Z, … MS-B, 2021 U, Samiei M, et al. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. 2021 Dec 1 [cited 2023 Jul 16];21(1). Available from: https://link.springer.com/article/10.1186/s12896-020-00666-3
    https://doi.org/10.1186/s12896-020-00666-3

 

  1. Ghobashy MM, El-Sawy NM, Kodous AS. Nanocomposite of cosubstituted carbonated hydroxyapatite fabricated inside Poly(sodium hyaluronate-acrylamide) hydrogel template prepared by gamma radiation for osteoblast cell regeneration. Radiat Phys Chem. 2021 Jun 1;183.
    https://doi.org/10.1016/j.radphyschem.2021.109408

 

  1. Li Y, Zhao D, Wang Z, Meng Y, Liu B, Li L, et al. Minimally invasive bone augmentation through subperiosteal injectable hydroxylapatite/laponite/alginate nanocomposite hydrogels. Int J Biol Macromol. 2023 Mar 15;231.
    https://doi.org/10.1016/j.ijbiomac.2023.123232

 

  1. Kurian AG, Mandakhbayar N, Singh RK, Lee JH, Jin G, Kim HW. Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses. Mater Today Bio. 2023 Jun 1;20.
    https://doi.org/10.1016/j.mtbio.2023.100664

 

  1. Qu L, Dubey N, Ribeiro JS, Bordini EAF, Ferreira JA, Xu J, et al. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J Mech Behav Biomed Mater. 2021 Apr 1;116.
    https://doi.org/10.1016/j.jmbbm.2020.104293

 

  1. Lee SH, Kang MS, Jeon S, Jo HJ, Hong SW, Kim B, et al. 3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon. 2023 Mar 1;9(3).
    https://doi.org/10.1016/j.heliyon.2023.e14490

 

  1. Xu Z, Qi X, Bao M, Zhou T, Shi J, Xu Z, et al. Biomineralization inspired 3D printed bioactive glass nanocomposite scaffolds orchestrate diabetic bone regeneration by remodeling micromilieu. Bioact Mater. 2023 Jul 1;25:239-55.
    https://doi.org/10.1016/j.bioactmat.2023.01.024

 

  1. Sadeghian A, Kharaziha M, Khoroushi M. Osteoconductive visible light-crosslinkable nanocomposite for hard tissue engineering. Colloids Surfaces A Physicochem Eng Asp. 2022 Jan 2;632.
    https://doi.org/10.1016/j.colsurfa.2021.127761

 

  1. Keshavarz M, Alizadeh P, Kadumudi FB, Orive G, Gaharwar AK, Castilho M, et al. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. 2023 [cited 2023 May 12]; Available from: https://pubs.acs.org/doi/abs/10.1021/acsami.3c01717
    https://doi.org/10.1021/acsami.3c01717

 

  1. Zhong W, Xiong Y, Wang X, Yu T, Zhou C. Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection. Mater Sci Eng C [Internet]. 2021 Jan 1 [cited 2023 Jul 16];118. Available from: https://www.sciencedirect.com/science/article/pii/S0928493120334500
    https://doi.org/10.1016/j.msec.2020.111532

 

  1. Ghandforoushan P, Hanaee J, Aghazadeh Z, Samiei M, Navali AM, Khatibi A, et al. Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro. Int J Biol Macromol. 2022 Mar 15;201:270-87.
    https://doi.org/10.1016/j.ijbiomac.2021.12.097

 

  1. Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Biomaterials GB-, et al. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Elsevier [Internet]. [cited 2023 Jul 16]; Available from: https://www.sciencedirect.com/science/article/pii/S0142961219305678

 

  1. Pan T, Song W, Xin H, Yu H, Wang H, Ma D, et al. MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration. Bioact Mater. 2022 Apr 1;10:1-14.
    https://doi.org/10.1016/j.bioactmat.2021.08.034

 

  1. Mendes BBB, Gómez-Florit M, Araújo AC, Prada J, Babo PS, Domingues RMA, et al. Intrinsically Bioactive Cryogels Based on Platelet Lysate Nanocomposites for Hemostasis Applications. 2020 Sep 14 [cited 2023 Jul 16];21(9):3678-92. Available from: https://pubs.acs.org/doi/abs/10.1021/acs.biomac.0c00787
    https://doi.org/10.1021/acs.biomac.0c00787

 

  1. Favatela F, Horst MF, Bracone M, Gonzalez J, Alvarez V, Lassalle V. Gelatin/Cellulose nanowhiskers hydrogels intended for the administration of drugs in dental treatments: Study of lidocaine as model case. J Drug Deliv Sci Technol. 2021 Feb 1;61.
    https://doi.org/10.1016/j.jddst.2020.101886

 

  1. Ke Y, Wu J, Ye Y, Zhang X, Gu T, Wang Y, et al. Feather keratin-montmorillonite nanocomposite hydrogel promotes bone regeneration by stimulating the osteogenic differentiation of endogenous stem cells. Int J Biol Macromol. 2023 Jul 15;243.
    https://doi.org/10.1016/j.ijbiomac.2023.125330

 

  1. Varshosaz J, Sajadi-Javan ZS, Kouhi M, Mirian M. Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels. Int J Biol Macromol. 2021 Dec 1;192:869-82.
    https://doi.org/10.1016/j.ijbiomac.2021.10.009

 

  1. Liu J, Zou T, Zhang Y, Koh J, Li H, Wang Y, et al. Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla. Biomater Adv. 2022 Jul 1;138.
    https://doi.org/10.1016/j.bioadv.2022.212868

 

  1. Ebrahimi MH, Samadian H, Davani ST, Kolarijani NR, Mogharabian N, Salami MS, et al. Peripheral nerve regeneration in rats by chitosan/alginate hydrogel composited with Berberine and Naringin nanoparticles: in vitro and in vivo study. J Mol Liq. 2020 Nov 15;318.
    https://doi.org/10.1016/j.molliq.2020.114226

 

  1. Daniyal M, Liu B, Wang W. Comprehensive Review on Graphene Oxide for Use in Drug Delivery System. Curr Med Chem [Internet]. 2020 Jun 15 [cited 2023 Aug 13];27(22):3665-85. Available from: https://pubmed.ncbi.nlm.nih.gov/30706776/
    https://doi.org/10.2174/13816128256661902011296290

 

  1. Wunnoo S, Bilhman S, Waen‐ngoen T, Yawaraya S, Paosen S, Lethongkam S, et al. Thermosensitive hydrogel loaded with biosynthesized silver nanoparticles using Eucalyptus camaldulensis leaf extract as an alternative treatment for microbial biofilms and persistent cells in tissue infections. J Drug Deliv Sci Technol. 2022 Aug 1;74.
    https://doi.org/10.1016/j.jddst.2022.103588

 

  1. Borges-Vilches J, Figueroa T, Guajardo S, Carmona S, Mellado C, Meléndrez M, et al. Novel and effective hemostats based on graphene oxide-polymer aerogels: In vitro and in vivo evaluation. Biomater Adv [Internet]. 2022 Aug 1 [cited 2023 Aug 13];139. Available from: https://pubmed.ncbi.nlm.nih.gov/35891602/
    https://doi.org/10.1016/j.bioadv.2022.213007

 

  1. Dong Z, Lin Y, Xu S, Chang L, Zhao X, Mei X, et al. NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration. Mater Des. 2023 Jan 1;225.
    https://doi.org/10.1016/j.matdes.2022.111487

 

  1. Li N, Xie L, Wu YYY, Wu YYY, Liu Y, Gao Y, et al. Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. 2022 Dec;16:100360. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35937574
    https://doi.org/10.1016/j.mtbio.2022.100360

 

  1. Bako J, Toth F, Gall J, Kovacs R, Csík A, Varga I, et al. Combined Release of Antiseptic and Antibiotic Drugs from Visible Light Polymerized Biodegradable Nanocomposite Hydrogels for Periodontitis Treatment. Pharmaceutics [Internet]. 2022 Apr 28 [cited 2023 Jul 16];14(5). Available from: http://www.ncbi.nlm.nih.gov/pubmed/35631542
    https://doi.org/10.3390/pharmaceutics14050957

 

  1. He Z, Zhou X, Wang Y, Lin J, Huang S, Hu R, et al. Asymmetric barrier membranes based on polysaccharide micro-nanocomposite hydrogel: Synthesis, characterization, and their antibacterial and osteogenic activities. Carbohydr Polym. 2021 Dec 1;273.
    https://doi.org/10.1016/j.carbpol.2021.118525

 

  1. Shafiee S, Ahangar HA, Saffar A. Taguchi method optimization for synthesis of Fe3O4 @chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydr Polym. 2019 Oct 15;222.
    https://doi.org/10.1016/j.carbpol.2019.114982

 

  1. Verma C, Negi P, Pathania D, Anjum S, Gupta B, … SA-IJ of, et al. Novel Tragacanth Gum-Entrapped lecithin nanogels for anticancer drug delivery. 2020 Jun 12 [cited 2023 Jul 16];69(9):604-9. Available from: https://www.tandfonline.com/doi/abs/10.1080/00914037.2019.1596910
    https://doi.org/10.1080/00914037.2019.1596910

 

  1. Wu B, Pascu EI, Brady SA, Brougham DF, Clarkin OM. Fine property-tuning through Ca content control in a facile synthesis of glasses-based self-setting injectable hydrogel. Mater Des. 2021 Dec 1;211.
    https://doi.org/10.1016/j.matdes.2021.110166

 

  1. Huang H, Wang X, Wang W, Qu X, Song X, Zhang Y, et al. Injectable hydrogel for postoperative synergistic photothermal-chemodynamic tumor and anti-infection therapy. Biomaterials. 2022 Jan;280.
    https://doi.org/10.1016/j.biomaterials.2021.121289

 

  1. Moonesi Rad R, Atila D, Akgün EE, Evis Z, Keskin D, Tezcaner A. Evaluation of human dental pulp stem cells behavior on a novel nanobiocomposite scaffold prepared for regenerative endodontics. Mater Sci Eng C. 2019 Jul 1;100:928-48.
    https://doi.org/10.1016/j.msec.2019.03.022

 

  1. Hoveizi E, Naddaf H, Ahmadianfar S, Gutmann JL. Encapsulation of human endometrial stem cells in chitosan hydrogel containing titanium oxide nanoparticles for dental pulp repair and tissue regeneration in male Wistar rats. J Biosci Bioeng. 2023 Apr 1;135(4):331-40.
    https://doi.org/10.1016/j.jbiosc.2022.12.009

 

  1. Bekhouche M, Bolon M, … FC-J of M, 2020 U. Development of an antibacterial nanocomposite hydrogel for human dental pulp engineering. pubs.rsc.org [Internet]. Available from: https://pubs.rsc.org/en/content/articlehtml/2020/tb/d0tb00989j

 

  1. Sadeghian A, Kharaziha M, Khoroushi M. Dentin extracellular matrix loaded bioactive glass/GelMA support rapid bone mineralization for potential pulp regeneration. Int J Biol Macromol. 2023 Apr 15;234.
    https://doi.org/10.1016/j.ijbiomac.2023.123771

 

  1. Carpa R, Remizovschi A, Culda CA, Butiuc-Keul AL. Inherent and Composite Hydrogels as Promising Materials to Limit Antimicrobial Resistance. Gels 2022, Vol 8, Page 70 [Internet]. 2022 Jan 20 [cited 2023 Aug 13];8(2):70. Available from: https://www.mdpi.com/2310-2861/8/2/70/htm
    https://doi.org/10.3390/gels8020070

 

  1. Porter GC, Schwass DR, Tompkins GR, Bobbala SKR, Medlicott NJ, Meledandri CJ. AgNP/Alginate Nanocomposite hydrogel for antimicrobial and antibiofilm applications. Carbohydr Polym. 2021 Jan 1;251.
    https://doi.org/10.1016/j.carbpol.2020.117017

 

  1. Kazeminava F, Arsalani N, Ahmadi R, Kafil HS, Geckeler KE. A facile approach to incorporate silver nanoparticles into solvent-free synthesized PEG-based hydrogels for antibacterial and catalytical applications. Polym Test. 2021 Sep 1;101.
    https://doi.org/10.1016/j.polymertesting.2020.106909